
502 052 08 
 

PROCES-DATA A/S 
NAVERVEJ 8, DK-8600 SILKEBORG  •  Tel. +45-87 200 300  •  Fax +45-87 200 301  •  info@proces-data.com  •  www.proces-data.com 

Process-Pascal 
 

 

Manual 
GB 



502 052 08 
 
 

August 2007 

©  Copyright 2005 by PROCES-DATA A/S . All rights reserved. 

PROCES-DATA A/S  reserves the right to make any changes without prior notice. 

P-NET, Soft-Wiring  and Process-Pascal  are registered trademarks of PROCES-DATA A/S . 



502 052 08 
 

Manual Process-Pascal 3/144 

Contents 
 
 

 

1 Introduction to Process-Pascal........................................................................................ 7 

2 Interpretation of Syntax diagrams.................................................................................... 8 

3 Program Structure in Process-Pascal ........................................................................... 10 

4 Tasks.............................................................................................................................. 13 
4.1 Task types .............................................................................................................. 13 
4.2 How to Split a Program into Manageable Tasks.................................................... 14 
4.3 Task Declaration .................................................................................................... 15 

5 Defining Data ................................................................................................................. 20 
5.1 Variables................................................................................................................. 20 
5.2 Identifiers................................................................................................................ 20 

6 Simple Data Types ........................................................................................................ 21 
6.1 Ordinal types .......................................................................................................... 21 
6.2 The BOOLEAN type............................................................................................... 22 
6.3 The CHAR type ...................................................................................................... 23 
6.4 The INTEGER type ................................................................................................ 23 
6.5 The REAL type ....................................................................................................... 24 
6.6 The TIMER type ..................................................................................................... 25 
6.7 The REALDATE type ............................................................................................. 25 

7 Structured Types ........................................................................................................... 26 

8 Variable Declaration ...................................................................................................... 27 
8.1 Global variables...................................................................................................... 27 
8.2 Variables on P-NET................................................................................................ 28 
8.3 Config ..................................................................................................................... 31 
8.4 Indirect variables .................................................................................................... 31 
8.5 Section variables .................................................................................................... 34 

9 Pointer Types................................................................................................................. 35 

10 Constants....................................................................................................................... 37 

11 Comments...................................................................................................................... 39 

12 Expressions and Assignments ...................................................................................... 40 
12.1 Expressions............................................................................................................ 40 
12.2 Operators................................................................................................................ 40 
12.3 Arithmetic operators ............................................................................................... 40 
12.4 Logical operators.................................................................................................... 41 
12.5 Relational operators ............................................................................................... 41 
12.6 String operator........................................................................................................ 42 
12.7 Operator precedence ............................................................................................. 43 

13 Statements..................................................................................................................... 44 



502 052 08 
 
 

4/144 Process-Pascal Manual 

13.1 Simple statements.................................................................................................. 44 
13.2 Assignment ............................................................................................................. 44 
13.3 Procedure statement.............................................................................................. 44 
13.4 Structured statements ............................................................................................ 44 
13.5 Compound statement (begin end) ......................................................................... 45 
13.6 Conditional statement (if then else) ....................................................................... 45 
13.7 Conditional statement (case) ................................................................................. 46 
13.8 While statement...................................................................................................... 46 
13.9 Repeat statement................................................................................................... 47 
13.10 For statement ......................................................................................................... 48 
13.11 Loop statement....................................................................................................... 49 

14 Array .............................................................................................................................. 50 
14.1 One-dimensional arrays......................................................................................... 50 
14.2 Multidimensional arrays ......................................................................................... 51 

15 Record ........................................................................................................................... 52 
15.1 Variant part............................................................................................................. 52 
15.2 Accessing fields...................................................................................................... 53 

16 Interface......................................................................................................................... 54 
16.1 Accessing fields...................................................................................................... 55 

17 Buffer ............................................................................................................................. 57 

18 String.............................................................................................................................. 59 

19 Bitmap............................................................................................................................ 60 
19.1 The smallbitmap type ............................................................................................. 60 
19.2 The largebitmap type ............................................................................................. 61 
19.3 The videobitmap type............................................................................................. 61 

20 Set.................................................................................................................................. 62 

21 User defined Types ....................................................................................................... 63 
21.1 Subrange types ...................................................................................................... 63 
21.2 Enumerated types .................................................................................................. 63 

22 Structured Constants..................................................................................................... 65 
22.1 Array constants ...................................................................................................... 65 
22.2 Record constants ................................................................................................... 66 

23 Procedures and Functions............................................................................................. 67 
23.1 Procedures.............................................................................................................. 67 
23.2 Reference parameters ............................................................................................ 68 
23.3 Value parameters.................................................................................................... 70 
23.4 Functions................................................................................................................ 72 

24 Scope............................................................................................................................. 73 

25 Interrupt ......................................................................................................................... 74 

26 WHEN ERROR.............................................................................................................. 76 
26.1 WHEN ERROR THEN [Disable] ............................................................................ 77 



502 052 08 
 

Manual Process-Pascal 5/144 

26.2 ERROR REPORT .................................................................................................. 79 
26.3 ERRORCODES...................................................................................................... 81 

27 The SoftWire List ........................................................................................................... 82 
27.1 The purpose of the SoftWire list............................................................................. 82 

28 Screen Setup and Definition.......................................................................................... 83 

29 Writing on the Screen .................................................................................................... 86 

30 Keyboard........................................................................................................................ 91 

31 Real-time Clock and Calendar....................................................................................... 92 

32 Accessing Undeclared Variables................................................................................... 93 

33 PD GATEWAY............................................................................................................... 96 

34 Process-Pascal Reference Lookup ............................................................................. 101 
34.1 Task handling ....................................................................................................... 101 

34.1.1 CHANGETASK ............................................................................................. 101 
34.1.2 CONTINUETASK.......................................................................................... 101 
34.1.3 CYCLICTASK ............................................................................................... 101 
34.1.4 DISABLE....................................................................................................... 102 
34.1.5 ENABLE........................................................................................................ 102 
34.1.6 INTERRUPTTASK........................................................................................ 103 
34.1.7 MAXRUNTIME.............................................................................................. 104 
34.1.8 MYTASKNO.................................................................................................. 104 
34.1.9 RESTARTTASK............................................................................................ 104 
34.1.10 STOPTASK................................................................................................... 104 
34.1.11 TIMEDINTERRUPTTIME ............................................................................. 105 
34.1.12 TIMEDTASK ................................................................................................. 106 

34.2 Error handling....................................................................................................... 106 
34.2.1 BITTEST ....................................................................................................... 106 
34.2.2 CLEAR .......................................................................................................... 107 
34.2.3 DISABLE....................................................................................................... 107 
34.2.4 ENABLE........................................................................................................ 107 
34.2.5 RAISE ........................................................................................................... 108 
34.2.6 RETRYIFLEGAL........................................................................................... 108 
34.2.7 RETURN ....................................................................................................... 109 

34.3 Display handling................................................................................................... 109 
34.3.1 BOX............................................................................................................... 109 
34.3.2 BOXTO.......................................................................................................... 109 
34.3.3 CURSORWITHIN.......................................................................................... 110 
34.3.4 CURSORTO ................................................................................................. 110 
34.3.5 CURSORTOABS .......................................................................................... 110 
34.3.6 DISPLAY....................................................................................................... 110 
34.3.7 LINE .............................................................................................................. 112 
34.3.8 LINETO ......................................................................................................... 112 
34.3.9 MOVECURSOR............................................................................................ 113 
34.3.10 MOVEPEN .................................................................................................... 113 
34.3.11 PENREFTO................................................................................................... 113 



502 052 08 
 
 

6/144 Process-Pascal Manual 

34.3.12 PENTO.......................................................................................................... 113 
34.3.13 PENTOABS .................................................................................................. 114 
34.3.14 PERFORMUPDATE ..................................................................................... 114 
34.3.15 SETCURSOR ............................................................................................... 114 
34.3.16 SETVIDEO.................................................................................................... 115 
34.3.17 UPDATE ....................................................................................................... 115 

34.4 Miscellaneous....................................................................................................... 117 
34.4.1 AND............................................................................................................... 117 
34.4.2 BUFFEREMPTY ........................................................................................... 117 
34.4.3 BUFFERFULL............................................................................................... 117 
34.4.4 CONVERT .................................................................................................... 117 
34.4.5 INITBUFFER................................................................................................. 118 
34.4.6 MYSWNO ..................................................................................................... 118 
34.4.7 OR................................................................................................................. 118 
34.4.8 POINTEROK................................................................................................. 119 
34.4.9 POINTERTONODE ...................................................................................... 119 
34.4.10 STRVAL ........................................................................................................ 119 
34.4.11 TAB ............................................................................................................... 120 
34.4.12 TESTANDSET .............................................................................................. 120 
34.4.13 VAL ............................................................................................................... 120 
34.4.14 VARNAME .................................................................................................... 121 

34.5 Standard constants .............................................................................................. 121 

35 Comparing Process-Pascal with ISO 7185 Standard Pascal ..................................... 122 
35.1 Exceptions to ISO 7185 STANDARD PASCAL................................................... 122 
35.2 Extensions to ISO 7185 Standard Pascal............................................................ 123 
35.3 Standard Procedures and Functions ................................................................... 125 
35.4 Reserved words in Process-Pascal ..................................................................... 126 
35.5 Compiler directives............................................................................................... 127 

36 Restrictions in Using Process-Pascal ......................................................................... 130 

37 Syntax Diagrams ......................................................................................................... 132 
 



502 052 08 
 

Manual Process-Pascal 7/144 

1 Introduction to Process-Pascal. 
Process-Pascal is a high level programming language based on Standard Pascal.  
 
Process-Pascal extends Standard Pascal with a number of facilities to make it possible to 
execute several programs simultaneously in one computer. This is called multi-tasking. 
 
Process-Pascal has been specifically developed for use in connection with the  
P-NET fieldbus, which is a local area network for the transmission of data throughout dis-
tributed data acquisition and process control plants. Data, which are located within physi-
cally distributed modules connected to P-NET, can be defined as variables in Process-
Pascal programs. 
 
Process-Pascal permits automatic reports of alarms to be produced in the event of an error 
occurring in the controller or in any of the interface modules. Furthermore, it is possible to 
automatically test all the components that make up a plant, during the start-up phase. 
 
Process-Pascal includes standard routines for interactive screen dialogue. Thus it is possible 
to define that a variable must be shown on the screen and be continuously updated. Data can 
be keyed into a variable by pointing to it using the screen cursor. 
 
Process-Pascal programs can be written using any general-purpose editor that produces 
ASCII or ANSI files. 
 
Process-Pascal programs operate with several types of variables. The compiler automatically 
performs typecasting during compilation. This makes programs easier to develop. 
 
The Process-Pascal program suite provides a debugger, which is a very powerful tool that 
significantly speeds up the overall process of application development. 
 
Process-Pascal programs are compiled using a cross-compiler running on a PC under differ-
ent Windows environments. The compiler generates code, P-code, which is stored in the 
controller in FLASH or RAM memory. The operating system in the controller interprets the P-
codes and executes a piece of machine code for each one. 
 
Process-Pascal programs cannot be executed on a PC. The compiler has been completely 
developed by PROCES-DATA A/S. 
 
This manual has been written for programmers who have some familiariarity with the Pascal 
language, and understand the basic structures for data and programs. 
 
This manual should be used in conjunction with the manual for the particular controller, for 
which a Process-Pascal program is being written. 
 



502 052 08 
 
 

8/144 Process-Pascal Manual 

2 Interpretation of Syntax diagrams 
Syntax diagrams are drawings that illustrate valid Process-Pascal syntax.  
 
 

 
 
To read a diagram, trace it from left to right, in the direction shown by the arrows. Com-
mands and other keywords appear in UPPERCASE inside ovals. Type them exactly as 
shown in the ovals. Operators, delimiters, and terminators appear inside circles. If the syn-
tax diagram has more than one path, you can choose any path to travel.  
Loops let you repeat the syntax within them as many times as you like. In the following ex-
ample, after choosing one constant, you can go back repeatedly to choose another, sepa-
rated by commas.  
 

 
 
 
A rectangle with text in lowercase represents another syntax diagram. When such a rec-
tangle is met, jump to the specific syntax diagram. When exiting from the specific syntax 
diagram continue after the rectangle with text in lowercase. 
Constant is an example on jumping to another syntax diagram, see the following diagram. 
 



502 052 08 
 

Manual Process-Pascal 9/144 

 
 
A rectangle with UPPERCASE text is a description, which is not explained any further. 
In the following syntax diagram, Digit is not explained any further 
 
 

 
A complete alphabetically sorted list of syntax diagrams is inserted as an appendix to this 
manual. 



502 052 08 
 
 

10/144 Process-Pascal Manual 

3 Program Structure in Process-Pascal 
Every Process-Pascal program consists of a heading and a block. The structure is illus-
trated below: 

Program Heading. 
 
A program heading consists of the word Program
and a name. Furthermore, it contains an ob-
jecttype and a list of capabilities for the controller. 
 
Global variable declaration.  
 
External variables, accessed via P-NET from other 
modules, are declared with an identifier, which is 
used within the program. 
 
Internal variables are used to exchange data be-
tween internal tasks, as well as external tasks in 
other controllers. 
 
 
Global procedure and function declaration. 
 
Global procedures and functions can be called 
from all internal tasks. 
A global procedure/function can be called from 
several tasks simultaneously, using different sets 
of parameters. 
 
 
Task declaration. 
 
Program declaration for a task. Tasks are exe-
cuted 'simultaneously'.  
 
Tasks are used to monitor and control different 
jobs that might occur simultaneously. Defining 
each independent job in a separate task achieves 
this. 
 
Data are exchanged between other tasks and the 
‘outside world ', via global variables. 
 
Unlike procedures, tasks are not called, since they 
are always present in a task queue, and are ready 
to run whenever conditions dictate. 

Program  name [objecttype, capabili-
ties]; 
 
VAR 
 global variable   
 
 
 Procedure   
 global procedure 
 
Function 
 global function 
 
 
Task  name1; 
VAR 
 local variable 
Begin  
 
End; 
 
 
 
Task  name2; 
VAR 
 local variable 
Begin 
 
End; 
 
 
 
Task  name3; 
VAR 
 local variable 
Begin 
 
End; 
 
End. 



502 052 08 
 

Manual Process-Pascal 11/144 

 

:

;

 
 
A Process-Pascal program is divided into a heading and a body. The body is called a block. 
The heading gives the program a name, an object-type to be used by VIGO, and the capabili-
ties for the Controller (also used by VIGO). The block consists of seven sections: LABEL, 
CONST, TYPE, VAR, PROCEDURES and FUNCTIONS and TASK declaration, where any, 
except the last, may be empty. 
 
Everything that is defined before any of the tasks is called the global section, and it is possi-
ble to have as many declaration sections as required, in any convenient order, including pro-
cedure and function declarations. But, as in standard Pascal, things must be defined before 
they are used, otherwise a compile-time error will occur. 
 
Task, procedure and function declarations have a structure similar to a program; i.e. each 
consists of a heading and a block. The titles used in the heading are different (TASK, PRO-
CEDURE, FUNCTION, instead of PROGRAM), and they all end with a  



502 052 08 
 
 

12/144 Process-Pascal Manual 

semi-colon instead of a period. They can have their own constants, data types and variables, 
and even their own procedures and functions. 
 
 
Tasks differ from procedures and functions in a number of ways: 
 
 1. TASKs have their own memory area allocated for variables defined in a VAR 

section in the block. Termination of a task does NOT release this allocated stor-
age. 

 2. TASKs have their own program counter and stack pointer, and operate entirely 
autonomously from other tasks. 

 3. TASKs cannot be nested. 
 4. TASKs do not need to be called from a statement in order to execute. 
 
The next sections describe the various usage of tasks. 



502 052 08 
 

Manual Process-Pascal 13/144 

4 Tasks  
Multi-tasking is a facility provided in Process-Pascal to make it possible to execute several 
sub-programs simultaneously, within the very same computer. These sub-programs are 
called TASKs, and are fundamental to Process-Pascal. They make it very easy to split a pro-
gram up into manageable portions, where each TASK performs a distinct function. 
 
Multi-tasking is very useful for process control, where the process can be controlled in real 
time. 
 
A TASK is a section of code, which controls a part of the process, e.g. monitoring the key-
board for user input, or controlling the valves on a blending unit etc. Each TASK will run and 
perform as much of its function as it needs to, before it relinquishes control of the processor, 
and allows another TASK to run. Whilst in reality, the TASKs are not performed in parallel, 
the switching between them is performed fast enough for the complete system to be re-
garded as operating in real time. Switching from one TASK to another can be specified to oc-
cur at any points within the program, including procedures. These can advantageously be 
used when a delay is known or is likely to occur, or in case a TASK is waiting for some ac-
tions to take place, e.g. for a certain level on an input signal to be achieved or for a TIMER to 
run out.  
 
Switching to another TASK in such situations makes the program more efficient, and wastes 
no time waiting. 
 
The statement CHANGETASK, which is a standard procedure in Process-Pascal, is used 
to perform the switching from one TASK to another. The actual TASK that calls 
CHANGETASK, stops program execution in that TASK, and then relinquishes control of the 
processor for use by the next TASK, which continues program execution from where it was 
last interrupted (e.g. by a previous CHANGETASK). 
 
The diagram below shows the principle of how program execution switches between a 
number of cyclic TASKs 
 

Task 1      

Task 2      

Task 3      

     Time 
 

4.1 Task types 
Process-Pascal handles 3 different types of TASKs: CYCLIC TASK, TIMEDINTERRUPT 
TASK and SOFTWIREINTERRUPT TASK. All 3 types of TASK can be used within the same 
program.  
 
Cyclic TASKs are executed in sequence, where a CHANGETASK switches to the following 
one in the sequence. The sequence is defined by the order in which the TASKs were written 
in the program. 
 



502 052 08 
 
 

14/144 Process-Pascal Manual 

TIMEDINTERRUPT TASKs are executed at certain time intervals, as controlled by the pro-
grammer. The time periods are declared in seconds and the resolution is 1/128 second. 
 
SOFTWIREINTERRUPT TASKs are executed each time a certain defined event occurs. e.g. 
the keyboard is activated, and a TASK starts running to read which key was pressed and to 
undertake the appropriate action. 
 
When a cyclic TASK is running and a TIMEDINTERRUPT or SOFTWIREINTERRUPT TASK 
is ready to run, a CHANGETASK is forced in the cyclic TASK, and control is given to the in-
terrupting TASK. When the interrupting TASK has finished, i.e. reaches a CHANGETASK 
statement, this CHANGETASK makes the previous cyclic TASK continue from where it was 
interrupted. 
 
A TIMERINTERRUPT or SOFTWIREINTERRUPT TASK  
cannot be interrupted by other TASKs. 
 
The diagram below shows the principle of how program execution switches, when a 
SOFTWIREINTERRUPT TASK interrupts a number of cyclic TASKs 
 

Task 1      

Task 2      

Int. task        

Task 3        

     Time 
The diagram below shows the principle of how program execution is switched, when a 
TIMEDINTERRUPT TASK interrupts a number of cyclic TASKs. The TIMEDINTERRUPT 
TASK is set to occur every t seconds. 
 
 

Task 1         

Task 2         

Timed task           

Task 3          

   < - - - t sec. - - - > < - - - t sec. - - - >  Time 
 
 
 
 

4.2 How to Split a Program into Manageable Tasks 
Several separate TASKs may be monitoring and controlling various devices simultane-
ously. A single TASK could be written to monitor the keyboard for user input. Another TASK 
might be responsible for what is displayed on the screen. Yet another TASK may be moni-
toring a flow meter, waiting for flow to start. One TASK may be affected by what happens in 
another one. e.g. The keyboard TASK detects a key press, which indicates that a process 
is to be started. This indicates to the TASK monitoring a flow meter to begin to take notice 



502 052 08 
 

Manual Process-Pascal 15/144 

of a flow rate, which in turn, causes the flow rate to be displayed on the screen by the dis-
play TASK. 
 
Splitting a program up into TASKs is considered by assessing which activities need to be per-
formed simultaneously. Each of these activities may then be implemented as an individual 
TASK. Taking the examples described above, it can be seen that the three tasks mentioned, 
i.e. monitoring the keyboard, monitoring a flow meter and displaying the data on the screen, 
all need to be performed simultaneously, and are therefore logical candidates for being struc-
tured as separate TASKs. 
 
Proper changetask usage 
Establishing the appropriate moments for switching between tasks, is an inherent part of 
designing a well structured and efficient Process-Pascal application. The main concept be-
hind this is that the changetask statement should be used in any part of the task where 
relatively long processor usage can be expected, for example, within loops. 
 
Differences between interrupt tasks and event handl ing procedures 
It is very important to understand the difference between multi-tasking programming and 
event-driven programming. 
It is a fact that event-driven programming plays a key role in MS Windows application de-
velopment. In this case, a relevant procedure (function) is called when a certain event oc-
curs. It is performed and then the control is given back to the main application. 
Multi-tasking programming is based on another concept. When a cyclic task is running and 
a timed interrupt or SoftWire interrupt task is ready to run, a changetask is forced in the 
cyclic task and control is given to the interrupting task. When the interrupting task has fin-
ished, i.e. reaches a changetask statement; this changetask makes the earlier cyclic task 
continue from where it was interrupted. It means that timed interrupt or SoftWire interrupt 
tasks should always contain a LOOP statement and at least one changetask. Otherwise 
the task will get a SUSPENDED status after the first run (if the LOOP is absent), or other 
tasks will never get back the control (if the changetask is absent). 

4.3 Task Declaration 
Process-Pascal handles 3 different types of TASKs: CYCLIC TASK, TIMEDINTERERUPT 
TASK and SOFTWIREINTERRUPT TASK. All 3 types of TASK can be used within the same 
program.  
 
The task declaration serves to define a program part and to associate it with an identifier. The 
declaration has the same form as a program, a heading and a block. 
 

 
 
 
The task heading names the task's identifier and specifies the task type. 
 



502 052 08 
 
 

16/144 Process-Pascal Manual 

 
A task declared without a task type attribute is given the default task type CYCLIC. 
 
 

 
The max RUNTIME is given by a real constant and is declared in seconds with a resolution of 
1/128 second. This can be used to force a changetask within the task to ensure that it will not 
prevent other tasks from running if it enters a "loop forever", when a changetask statement 
has not been included in the loop. The default RUNTIME is 300 seconds. 
 
The max RUNTIME can be changed during program execution with the standard procedure 
MAXRUNTIME(time), where time must be a constant or a variable, denoting the new max 
runtime in seconds. 
 
Below is an example of a timed interrupt task that runs every second: 
 
    TASK ProcessTime TIMEDINTERRUPT: 1.0; 
    VAR 
      Hour, Min, Sec: Integer; 
    BEGIN 
      Hour:=0; Min:=0; Sec:=0; 
      REPEAT 
        Sec:=Sec+1; 
        IF Sec = 60 THEN 
        BEGIN 
          Sec:=0; 
          Min:=Min+1; 
          IF Min = 60 THEN 
          BEGIN 
            Min:=0; 
            Hour:=Hour+1; 
          END; 
        END; 
        ChangeTask; 
      UNTIL Not Process_On; 



502 052 08 
 

Manual Process-Pascal 17/144 

    END; (* Task ProcessTime *) 
 
 
The initial task status can be declared to be READY or SUSPENDED. The default task status 
is READY. 
 
All the tasks are linked within a task chain system. The cyclic tasks form a cyclical ordered 
chain, with one task pointing to the next cyclic task, and where a CHANGETASK switches to 
the next one in the chain. The order of the cyclic tasks in the chain is defined by the order of 
the TASKs in the program, but this order can be changed if any of the tasks change status 
while the program is running. 
 
The timed interrupt tasks form another chain, where the order of the tasks is determined by 
the defined period of activation. TimedInterrupt TASKs are executed at certain time intervals, 
controlled by the programmer. The time period is specified by a real constant and is declared 
in seconds with a resolution of 1/128 second. 
 
The SoftWire interrupt tasks are held in a third chain, where execution is determined by the 
corresponding interrupt connections. The interrupt connections and interrupt conditions are 
declared in the global variable declaration. 
 
When a task is included in a chain, the task status is set to READY. A SUSPENDED task will 
have been removed from the task chain system, and will not be able to run as long it remains 
suspended. 
 
A SUSPENDED task can change to READY status, if another RUNNING task calls the stan-
dard procedure CONTINUETASK with the appropriate task identifier, CONTINUETASK 
(TaskIdentifier). This will insert the task in the appropriate task chain again, and enable the 
task "TaskIdentifier" to continue from where it was last stopped or interrupted. 
 
A READY task can change to SUSPENDED status, if another RUNNING task calls the stan-
dard procedure STOPTASK with the appropriate task identifier, STOPTASK (TaskIdentifier).  
 
This will remove the task from the task chain system and prevent the task "TaskIdentifier" 
from running any further, until it is changed to READY again from another task by means of 
CONTINUETASK(TaskIdentifier) statement.  
 
If a task arrives at an END for the task block, its status is automatically changed to 
SUSPENDED, the task is removed from the chain and the task program counter is set to the 
beginning of the task. Subsequently, the task will RESTART, if another task calls the 
CONTINUETASK(taskidentifier) statement. 
 
A RUNNING task can force itself to RESTART from the beginning of the task. To perform a 
restart for a task, the standard procedure RESTARTTASK is called. After calling 
RESTARTTASK, program execution will continue with the first statement within the task. 
  



502 052 08 
 
 

18/144 Process-Pascal Manual 

To enable tasks to be started and stopped within a program, it is required that the task identi-
fiers are declared before they are used. This can, in some cases, be impossible. To solve this 
problem, a FORWARD declaration of task identifiers can be included. A FORWARD declara-
tion must be placed as the first task(s). 
 
Example of a forward declaration: 
  FORWARD Task WeightControl; 
 
The time interval for a timed interrupt task can be changed during program execution, by 
means of the standard procedure TIMEDINTERRUPTTIME(time), where time can be a con-
stant or a variable, denoting the interval time in seconds. The time is specific to the task that 
calls the procedure, so the procedure must be called from the task where the time must be 
changed, i.e. a task can only change its own time. When a task is declared to be a timed in-
terrupt task, the time interval must be included in the task heading. 
 
Example of a task heading for a TimedInterrupt task: 
  TASK ProcessTime TIMEDINTERRUPT: 1.0; 
 
Within cyclic tasks, TIMEDINTERRUPT TASKs can be ENABLED, i.e. allowed to interrupt, or 
DISABLED, not allowed to interrupt cyclic tasks. ENABLE(TimedInterrupt) is a standard pro-
cedure, to be used in cyclic  tasks, to allow timed tasks to interrupt the cyclic task. In all cyclic 
tasks, TIMEDINTERRUPT TASKs are ENABLED as default after a reset. 
 
DISABLE(TimedInterrupt) is a standard procedure to be used in cyclic tasks, which disables 
all TIMEDINTERRUPT TASKs, i.e. denotes that no timed interrupt task is allowed to interrupt 
this cyclic task. Disabling the timed interrupt tasks will not change the status of these tasks. 
This means that they are not removed from the task chain, and when the timed interrupt 
tasks are enabled again, they will try to catch up with any lost time. If a timed interrupt is dis-
abled or enabled from within a procedure or a function, the interrupt status is automatically 
set back to the state it held before the call, after the procedure or function has been com-
pleted. 
 
SOFTWIREINTERRUPT TASKs are executed each time a certain globally defined variable is 
accessed. The conditions for activating the interrupt when accessing the variable are set by 
the variable declaration.  
 
See the chapter INTERRUPT about connecting an interrupt to a variable. A number in the 
range 0 to 31 gives the interrupt connection. Several global variables may be connected to 
the same interrupt number. 
 
Example of a task heading for a softwireinterrupt task: 
  TASK Keyboard SOFTWIREINTERRUPT:0; 
 
Any task can change task type  during program execution. 
 
A CYCLIC task and a SOFTWIREINTERRUPT task can be changed to a 
TIMEDINTERRUPT task, by means of the standard procedure TIMEDTASK. Before chang-



502 052 08 
 

Manual Process-Pascal 19/144 

ing the task type to TimedInterrupt, the interval time must be selected, TimedInter-
ruptTime(time), or a default value of 255 seconds is used. Changing the task type, will not af-
fect program execution, and the task will continue until it meets a ChangeTask statement. 
 
A TIMEDINTERRUPT task and a SOFTWIREINTERRUPT task can be changed to a 
CYCLIC task by means of the standard procedure CYCLICTASK. Changing the task type will 
insert the task within the cyclic sequence, and subsequent program execution for the task will 
continue until it meets a ChangeTask statement. When the task runs again, it is still within the 
cyclic sequence and thus continues from the statement following ChangeTask. 
 
A CYCLIC task and a TIMEDINTERRUPT task can change to a SOFTWIREINTERRUPT 
task, by means of the standard procedure INTERRUPTTASK, but only if the task was origi-
nally declared as a softwireinterrupt task. The interrupt connection is set to the initial softwire-
interrupt number (declared in the task head). Changing the task type will not affect program 
execution, and the task will continue until it meets a ChangeTask statement. The task will 
continue with the next statement, when an interrupt with the corresponding interrupt connec-
tion is generated. 



502 052 08 
 
 

20/144 Process-Pascal Manual 

5 Defining Data 
 

5.1 Variables 
A variable possesses three characteristics: 
 1: a name 
 2: a type 
 3: a current value 
 
The variable is identified by a name. This name is used throughout the entire program. 
 
When a variable is declared, its type must also be stated. A variable's type circumscribes the 
set of values it can possess, and the operations that can be performed upon it.  
 
The value of a variable may change during program execution. When a variable has been 
declared, but before a value has been assigned to it, it is said to be undefined. 
 

5.2 Identifiers 
Any names given to constants, types, variables, bounds, procedures, functions etc., are 
called identifiers. 
 
They must begin with a letter, which may be followed by any combination and number of let-
ters and digits. Corresponding upper-case and lower-case letters are considered equivalent. 
Letters can be in the range from 'a' to 'z', an underscore '_' and the Danish letters 'æ', 'ø' and 
'å'. 
 
Examples of identifiers: 
 Temperature MultiFunc  ProcessTime FirstKey 
 ModePort1  This_Is_A_Very_Long_Identifier 
 
Certain identifiers are reserved (word-symbols or reserved words). A reserved word cannot 
be used as an identifier. 
 
Process-Pascal provides a number of pre-declared identifiers. These pre-declared identifiers 
are not reserved words, but names for standard procedures, functions and so on. These 
names should not be used either, to avoid any mistakes. A complete list of all reserved words 
and pre-declared identifiers in Process-Pascal is given in chapter 35.3. 



502 052 08 
 

Manual Process-Pascal 21/144 

6 Simple Data Types 
A program uses data of various formats and for various functions. The formats, and partly the 
function, are determined by the data type. 
 
A data type defines the set of values a variable may assume and the basic operations that 
may be applied to it. Every variable occurring in a program must be associated with one and 
only one type. 
 
Simple data types define ordered sets of values and are one of the predefined types 
'REAL', 'LONGREAL', 'TIMER', ’REALDATE’ or an ordinal type. 
 

 
 
 

 
 
 

6.1 Ordinal types 
Ordinal types are a subset of simple types. Ordinal types possess the following four charac-
teristics: 
 
1: All possible values of a given ordinal type are part of an ordered set, and each possible 

value is associated with an ordinality, which is an integral value. Except for integer type 
values, the first value of every ordinal type has ordinality 0, the next has ordinality 1, 
and so on, for each value of that ordinal type. An integer type value's ordinality is the 
value itself. In any ordinal type, each value, other than the first, has a predecessor, and 
each value, other than the last, has a successor, based on the ordering of the type. 

 
2: The standard function Ord  can be applied to any ordinal type value to return the ordi-

nality of the value. 
 
3: The standard function Pred  can be applied to any ordinal type value to return the pre-

decessor of the value. The predecessor is defined by Pred(x) < x, and Ord(Pred(x)) = 
Ord(x) - 1.  

   



502 052 08 
 
 

22/144 Process-Pascal Manual 

4: The standard function Succ  can be applied to any ordinal type value to return the suc-
cessor of the value. The successor is defined by Succ(x) > x, and Ord(Succ(x)) = 
Ord(x) + 1.  

 
Process-Pascal includes 6 predefined ordinal types: Integer, Byte, Word, Longinteger, 
Boolean,  and Char . In addition, there are two other classes of user-defined ordinal types: 
enumerated types and sub-range types. These types are described in the USERDEFINED 
TYPES chapter. 
 
 

6.2 The BOOLEAN type 
A boolean value is one of the logical truth values, expressed by use of the predefined con-
stant identifiers false and true . In Process-Pascal, the additional predefined constant identifi-
ers Off  equals false,  and On equals true . 
 
Relational operators ( =, <>, <=, <, >, >= ) can be used within a boolean expression, and the 
following relationships hold: 
 
 False < True 
 Ord(False) = 0 
 Ord(On) = 1 
 False = Off 
 True = On 
 
Pre-declared BOOLEAN functions, i.e. pre-declared functions, which yield a BOOLEAN re-
sult, are: 
 
 BufferEmpty(buf) true if the buffer is empty 
 BufferFull(buf) true if the buffer is full 
 Odd(i)  true if the integer i is odd 
 
The buffer functions are described in detail in the BUFFER chapter. 
 
 
 



502 052 08 
 

Manual Process-Pascal 23/144 

6.3 The CHAR type  
This type's set of values consists of characters, ordered in accordance with the ASCII charac-
ter set. The function call Ord(ch) , where ch is a char value, returns ch's ordinality, which is 
the numerical ASCII value for that character. 
 
Any value of the type char can be generated with the standard function Chr(value) . 
 
A character enclosed in apostrophes (single quotes or double quotes), denotes a value of the 
char type. 
 
To represent a single quote, enclose it in double quotes. To represent a double quote, en-
close it in single quotes. 
 
Examples of values of char type: 
 
 'a' 'H' '8' "e" "'" '"' 
 
 

6.4 The INTEGER type 
There are four predefined integer types in Process-Pascal: byte, integer, word  and long-
integer . Each type encompasses a specific subset of whole numbers, as shown in the follow-
ing table: 
 
TYPE    RANGE   FORMAT  
byte    0 .. 255   unsigned 8-bit 
word    0 .. 65535   unsigned 16-bit 
integer   -32768 .. +32767  signed 16-bit 
longinteger -2147483648 .. +2147483647  signed 32-bit 
 
Arithmetic operations having an integer type operand, use 8-bit, 16-bit or 32-bit precision, ac-
cording to the following rules: 
 
1: The type of an integer constant will adopt the predefined integer type that has the 

smallest range and includes the value of the integer constant. 
 
2: Binary operations can be performed with all integer types. For a binary operator, both 

operands are converted to their common type before the operation. The common type 
for a byte and a word is word, which means that a binary operation on a byte and a 
word converts the byte to a word, and then the operation is performed. 

 
3: The expression on the right side of an assignment statement is evaluated dependent 

on the type of the variable in the expression and the type on the left side. 
 
An integer type is converted to another integer type through typecasting. Typecasting is au-
tomatically performed during compilation. 
 



502 052 08 
 
 

24/144 Process-Pascal Manual 

A special typecasting can be performed to convert integer types to Boolean array types and 
vice versa, through a CONVERT function. The CONVERT function performs the typecasting 
in accordance with the following table: 
 

INTEGER TYPE BOOLEAN ARRAY SIZE  
Byte 8 
Integer 16 
Word 16 
longinteger 32 

 
 
 
Examples of using the CONVERT function: 
 
  TYPE 
    BIT8  = ARRAY[0..7]  OF BOOLEAN; 
    BIT16 = ARRAY[0..15] OF BOOLEAN; 
    BIT32 = ARRAY[0..31] OF BOOLEAN; 
 
  VAR 
    Bit8Var  : BIT8; 
    Bit16Var : BIT16; 
    Bit32Var : BIT32; 
    ByteVar  : BYTE; 
    IntVar   : INTEGER; 
    LIntVar  : LONGINTEGER; 
 
  BEGIN 
    ByteVar:=Convert(Bit8Var);    (* convert an 8 b it boolean array 
to a byte *) 
    Bit16Var:=Convert(IntVar);     (* convert an in teger to a 16 
bit boolean array *) 
    Bit32Var:=Convert(LIntVar);   (* convert a long integer to a 32 
bit boolean array *) 
 
This CONVERT function is very useful when it is required to mask out some bits, or to read a 
combination of bits as data in conjunction with digital inputs and outputs. 
NOTE: the boolean array must start with index 0. 
 

6.5 The REAL type 
A real type has a set of values that is a subset of real numbers, which can be represented in 
floating-point notation with a fixed number of digits.  
 
There are two kinds of the real type: real and longreal . 
 
The real  type occupies 4 bytes of memory, in a format according to the IEEE 754 standard  
for short real format (the same format as used in the 80x87 math processor for a single real  
type), providing a range of 3.4 * 10E-38 to 3.4 * 10E38 with 7 significant digits. 
 



502 052 08 
 

Manual Process-Pascal 25/144 

 
The longreal  type occupies 8 bytes of memory, in a format according to the IEEE 754 
standard for long real format (the same format as used in the 80x87 math processor for a 
double real type), providing a range of 1.7 * 10E-308 to 1.7 * 10E308 with 15 significant 
digits. 
 

6.6 The TIMER type 
The timer  type occupies 4 bytes of memory and is assigned as a real . The value for a vari-
able of a timer type is in seconds. A timer type variable counts down with a resolution of 
1/128 second. The count down continues  through negative values. 
 
The timer stops counting down when the power is off. 
 
A timer type variable can be used anywhere in the program. It is commonly used by as-
signing a value to it and afterwards testing whether the value of the variable is <= 0.0. 
 
The number of defined variables of timer type has no effect on the program execution time. 
TIMERS cannot be set to values higher than 1.6777 * 10E7, which corresponds to 4660 
hours or 194 days. 
 

6.7 The REALDATE type 
The REALDATE type is based on the same type as the longreal type. 
The integral part of a REALDATE value is the number of days that have passed since 
12/30/1899. The fractional part of a REALDATE value is fraction of a 24 hour day that has 
elapsed. 
 
Following are some examples of REALDATE values and their corresponding dates and 
times: 
 
Date and time Representation 
30 December 1899, 00.00 0.00 
1 January 1900, 00.00 2.00 
4 January 1900, 00.00 5.00 
4 January 1900, 06.00 5.25 
4 January 1900, 12.00 5.50 
4 January 1900, 21.00 5.875 
4 January 1900, 21.30 5.89583333 
 
To find the fractional number of days between two dates, simply subtract the two values.  
 
 



502 052 08 
 
 

26/144 Process-Pascal Manual 

7 Structured Types 
Process-Pascal provides facilities for creating collections of data types in the form of struc-
tured types. Although data types can be quite sophisticated, each must ultimately be built up 
using unstructured simple types. 
 
A structured type, characterised by its structuring method and by its component type(s), 
holds more than one value. If a component type is structured, the resulting structured type 
has more than one level of structuring. A structured type can have unlimited levels of struc-
turing. 
 
 

 
 
Each of the methods for structuring types is described in separate chapters. 



502 052 08 
 

Manual Process-Pascal 27/144 

8 Variable Declaration 
Every variable identifier used within a program must initially be introduced using a variable 
declaration. This declaration must be textually introduced prior to using the variable. 
 
A variable declaration introduces a variable identifier and its associated data type, by listing 
the identifier followed by the type. The type chosen for a variable can either be a type identi-
fier previously declared in a type declaration part in the same block or in an enclosing block, 
or it can be a new type definition. The reserved word VAR heads the variable declaration 
part. It is permitted to type VAR more than once within the same variable declaration part. 
 
Variables can be declared to reside inside the controller, or externally in other devices at a 
net-address. The compiler will automatically allocate memory for internal variables, or they 
can be declared to reside at specific memory addresses for specific hardware applications. 
 
Variables declared before tasks, and outside procedures and functions, are called global 
variables,  and reside in a global data section. Variables declared within a task, but outside 
procedures and functions, are called local variables,  and reside in a local data section for 
the specific task. Variables declared within procedures and functions are also called local 
variables, but these are only recognised by the procedure or function within which they are 
defined. 
 

8.1 Global variables 
All the global identifiers that have been declared in a Process-Pascal program are given a 
number by the compiler. These are called SoftWire  numbers (SWNo), and are used as an 
entry key into the SoftWire list,  which contains information about the type and structure of 
each individual global variable and constant used in the particular program. 
 
Variables of the same type can be declared using a list of identifiers, separated by a comma, 
followed by a colon, then stating the common type for these variables. 
 

:

:

 
 
Examples of variable declarations: 
 
VAR 
  LineNo, PageNo : INTEGER;    (* The memory for th ese variables *) 
  Color : BYTE;                (* are allocated   * ) 
  Process_On, AlarmState : BOOLEAN;   (* by the com piler *) 



502 052 08 
 
 

28/144 Process-Pascal Manual 

  Wait, LightTime : TIMER; 
  Limit : REAL; 
 
Variables can be defined to reside either at a specific address in memory, at a specific Soft-
Wire number or at a net-address. When a variable has been declared to reside at a SoftWire 
number or at a net-address, memory will have already been allocated for it within the control-
ler or within the remote device connected to P-NET 
 

 

 
An Address  clause is followed by an absolute memory address, and only one identifier can 
be specified. 
 
Example of a variable declaration for a specific memory address: 
 
  VAR 
    LightValue : WORD AT ADDRESS : $00FFFF08; 
 
The SoftWire  clause is followed by a specific number from the SoftWire table. The declara-
tion is rarely used without a net-address, because a global variable has to be declared in or-
der to generate an entry in the SoftWire table in the first place.  
 

8.2 Variables on P-NET 
Variables that are physically located within a module connected to P-NET, must be declared 
to reside at a certain location, defined by a net-address. When variables are declared to-
gether with a net address, no memory space is allocated within the controller. 
 

 

 



502 052 08 
 

Manual Process-Pascal 29/144 

 
The net-address is denoted by a net list, followed by an address, which can be an absolute 
address or a SoftWire number. 
 
The net list  holds an ordered set of numbers, which describes the path to the device, i.e. de-
noting the port-numbers and P-NET numbers for the module containing the variable. 
 
The net list can also be a string-identifier. This means that the net list can be a string-variable, 
and the P-NET node address for the module can therefore be set or changed during program 
execution. 
 
Example of a variable declaration, using a net list: 
 
  VAR 
    DigModule : PD3221 AT NET: ( 1,64); 
This variable declaration defines an entire interface module of the type PD3221 including all 
its channels and registers, which is to reside within the P-NET environment. The device is 
connected to the Controller via P-NET at port 1, and the device node address is 64. 
 
DigModule  is a global identifier for the entire interface module, and can be used in the same 
way as any other identifier throughout the program. 
 
PD3221 is the type of the variable, which is a pre-declared type specifying the internal or-
ganisation of the channels within the module. See PDMODULE.DEF in the Process-Pascal 
library 
 
AT NET specifies that the declared variable is an external variable that is located on P-NET. 
Any access to that variable is performed via the network. The following parameters (1, 64) 
specify where the module is located, as seen from the controller. The first parameter indi-
cates the communication port (Port 1 in this case), and the next parameter defines that the 
module is expected to have node address number 64. 
 
The ADDRESS and SOFTWIRE clauses denote a specific address or a Softwire No. within 
the module defined by the net list. 
 
Example of a variable declaration, using a net list and an ADDRESS clause: 
VAR 
  Mixer1 : 
    MixerController[devicetype:5000] AT NET:(1,37)A DDRESS: $0C00; 
 
Examples of variable declarations, using a net list and a SOFTWIRE clause: 
VAR 
  BeltControl : 
    BeltConType[devicetype:5000] AT NET: (1,38) SOF TWIRE: $92; 
  ExtInt : 
    Integer[devicetype:5000] AT NET: (2,3) SOFTWIRE : $124; 
 



502 052 08 
 
 

30/144 Process-Pascal Manual 

If it is required to declare a variable to reside at a fixed SoftWire number, e.g. a global data-
base for a number of controllers, the PLACE  clause must be used. (Examples of this can be 
found in the system files for the Controllers).  
 

 
 
Example of a variable declaration, using the PLACE clause: 
  VAR 
    DataBase : ARRAY[1.2000] OF INTEGER PLACE: 200;  
 

This declaration will fix the variable at SoftWire No. 200. It must be ensured that the declara-
tion for a specific location is made at a point before the compiler would generate the SoftWire 
number automatically. i.e. it is too late to place a variable at SoftWire number 200, if 300 vari-
ables have already been declared. 
 
A variable can be declared with a NAME, as a string constant for that variable. This name 
can be used as a string when an error occurs involving the variable. See details about errors 
and error handling in the WHEN ERROR chapter. 
 

 
 

 
 
 
Examples of variable declarations, using a name: 
  VAR 
    DigModule : PD3221 AT NET: ( 1,35)  
          NAME : 'Digital module panel 1'; 
    AnaModule : PD3240 AT NET: ( 1,38)  
          NAME : 'Analog controlunit 22'; 
 
When using NAME with variables of interface type (modules), conforming to the section 
INTERFACE DECLARATION in the P-NET Standard, each channel can get its own name. 
NAME for the module belongs to channel 0, the Service Channel. When using NAME on 
variables other than interface modules, each variable can only have one name. 
 



502 052 08 
 

Manual Process-Pascal 31/144 

8.3 Config 
A CONFIG clause can be added to a variable declaration such as those discussed in the 
previous section. This will enable specific sub-elements within that variable to be set (config-
ured) to particular values. The Config clause calls a single or a list of specific procedures, 
which have been designed to perform the configuration, and takes the form:  
 
  CONFIG: Procedureidentifier ( identifier, value);  
 
The parameters given in the clause consist of the remaining part of a complete global vari-
able identifier, and an expression denoting the value to which the variable is to be set. The 
particular procedure called, depends on the type of variable being configured (e.g. byte, real). 
All such Config procedure calls are instigated by calling the procedure ModuleConfiguration 
from within the main program. This in turn calls the particular procedure defined in each 
clause, using the defined parameters.  
 
See the examples included in the Service and Config programs in the Examples folders in the 
Process-Pascal library. 
 
Examples of variable declarations, using CONFIG: 
VAR 
DigModule : PD3221 AT NET: ( 1,35) 
    NAME : 'Module at CIP unit'  
    CONFIG : SetByte(.Service.ModuleConfig, WatchDo g); 
 
AnaModule : PD3240 AT NET: ( 1,38)  
    NAME : 'Inlet control unit' 
    CONFIG : Standard_PT100(.Analog_In_4); 
 
 
When the variable is of complex type, a component part of this variable can be specified as 
part of the first parameter. When the variable is an entire module, a channel or even a regis-
ter can be selected to be the parameter The procedure call passes the declared variable itself 
as a default and appends the remaining part of the identifier to form the complete identifier 
parameter. See the example above. The equivalent procedure calls for the above Config 
clauses would therefore be: 
 
    SETBYTE(DIGMODULE.SERVICE.MODULECONFIG, WATCHDOG); 
    STANDARD_PT100(ANAMODULE.ANALOG_IN_4); 
 
These procedure calls can be seen in the LIST file, having been substituted by the CONFIG 
statements. The Config procedures used are declared in the files called Config4.inc for PD 
4000 and in Config5.inc for PD 5000, and should be included in a program that uses them. 
 

8.4 Indirect variables 
The previous declarations show how it is possible to declare an entire interface module. 
However, when writing a program, it is often more convenient to include a more detailed 
specification of the inputs and outputs.  



502 052 08 
 
 

32/144 Process-Pascal Manual 

 
Variables can be declared indirectly, which means that a new variable identifier can be de-
clared, which will use the same location (the same memory address) as a previously declared 
variable, but can be accessed using the different identifier. An indirect variable identifier can 
also be used to access a sub-variable of a previously declared variable. 
 
Indirect variables are declared by typing an identifier followed by -> and followed by the iden-
tifier of a previously declared variable. This previously declared variable can be of any type. 
When using this method of variable declaration, the newly declared identifier will have the 
same type and the same address as the variable on the right hand side of the -> sign. 
 
 

 

 
 
This method of declaring variables is not a part of standard Pascal. 
 
The indirect variable  is a variable reference, and can be an entire structured variable, a 
specific component of a structured variable or a variable of simple type. 
 
The following example demonstrates how an indirect variable declaration is achieved in 
practice. 
VAR 
  UPI : PD3221 AT NET: (1,64);  (* Defines a UPI sl ave module *) 
 
  AgitatorCh -> UPI.Digital_IO_4; 
    (* Defines the Digital_IO channel No 4 *) 
  OverfillCh -> UPI.Digital_IO_6;  
    (* Defines the Digital_IO channel No 6 *) 
 
  Agitator -> AgitatorCh.FlagReg[7]; 
    (* Defines an Out Flag  of the Digital_ IO chan nel *) 



502 052 08 
 

Manual Process-Pascal 33/144 

  Overfill -> OverfillCh.FlagReg[6]; 
    (*  Defines an In Flag  of the Digital_ IO chan nel   *) 
 
  TempCh -> UPI.Analog_In_1; 
    (* Defines the 1st Analog Input channel *) 
  Temp -> TempCh.AnalogIn; 
    (* Defines the variable containing a 
       value of the analog input No 1 *) 
 
These variables can then be handled as ordinary variables. For example, any of the follow-
ing statements will start the agitator: 
  UPI.Digital_IO_4.FlagReg[7] := true; 
  AgitatorCh.FlagReg[7] := true; 
  Agitator := true; 
 
 
And the following statement will call the AlarmProc procedure in the event of level detector 
activation: 
 
  IF Overfill THEN AlarmProc; 
 
Indirect arrays can be used to assemble a number of non-descriptive variables, or parts of 
variables, into a structured collection of meaningful identifiers. These can then be used to 
produce easier to control and more understandable programs.  
 
The next example demonstrates this powerful feature. 
VAR 
    DigModule1 : PD3221 AT NET (2,51); 
    DigModule2 : PD3221 AT NET (2,52); 
 
    Valves -> ARRAY[1..MaxNumberOfValves] OF Digita lCh = 
        ([1] -> DigModule1.Digital_IO_1, 
         [2] -> DigModule1.Digital_IO_2, 
         [3] -> DigModule1.Digital_IO_3, 
         [4] -> DigModule1.Digital_IO_4, 
         [5] -> DigModule2.Digital_IO_1, 
         [6] -> DigModule2.Digital_IO_2, 
         [7] -> DigModule2.Digital_IO_3, 
         [8] -> DigModule2.Digital_IO_4); 
 
To access an IO channel in either of the two digital modules, i.e. a valve, an indirect element 
in the variable VALVES is accessed: 
    Valves[ValveNumber].FlagReg[7]:=ON; 
    IF Valves[3].Counter <= 20 THEN  
 
Examples of indirect variable declarations using the NAME clause: 
VAR 
  Start->DigModule.Digital_IO_1  
    NAME :'Start button for production'; 
  WaterTemp->AnaModule.Analog_In_1.AnalogIn  
    NAME :'Water temperature'; 



502 052 08 
 
 

34/144 Process-Pascal Manual 

 
The name 'Start button for production' is now associated with the variable Start, which means 
that the name can be used as a string when an error occurs in accessing channel 1 in Dig-
Module. See the WHEN ERROR chapter about how to use and retrieve the declared NAME. 
 
The CONFIG clause can also be used on indirect variables. 
 
Examples of indirect variable declarations using the NAME and CONFIG clause: 
VAR 
  Start->DigModule.Digital_IO_1  
          NAME :'Start button for production' 
          CONFIG: DigitalInput; 
  WaterTemp->AnaModule.Analog_In_1  
          NAME :'Water temperature' 
          CONFIG: Standard_Pt100; 
 

8.5 Section variables 
To place a variable in a defined section, i.e. FLASH, the variable definition must include a 
SECTION statement. The PLACE statement is in this case not the physical address of the vari-
able, but the memory bank in which the variable is placed.  
An example of a flash variable declaration is 
  (* Identifier : Type SECTION: <SectionName> *) 
  MyFlashVar : Integer PLACE: $EB SECTION: EEPROM; 
When using FLASH-memory to store data it should be considered that reading and writing 
is slower than for RAM. In addition there is a (large) maximum number of times each 
FLASH bank can be rewritten (see manual for the device in question). This implies that 
data not changed too often is a candidate for a FLASH variable. 



502 052 08 
 

Manual Process-Pascal 35/144 

9 Pointer Types 
All the previously discussed data types have the ability to hold data. A POINTER holds a dif-
ferent kind of information, - the location of where data are stored. Process-Pascal provides 
the use of pointers, as static variables, which means that the pointer variables are declared in 
the program and then denoted by their identifiers. They exist during the entire execution of a 
block (program, task, procedure or function). Pointer types cannot be allocated dynamically 
during program execution.  
 
A pointer is always specific to a particular data type and it can only point to a previously de-
clared variable of that type, or it can point to NIL. If a pointer is not initialised or pointing to 
NIL, the value of the pointer is undefined and an error code is generated (Error3 = $18). The 
standard function PointerOK can be used to test whether a pointer is valid. 
 
A pointer holds information on a variable’s SoftWire number and an offset, and occupies 14 
bytes of memory. 
 
Examples of pointer types: 
TYPE 
  RealPointer = POINTER TO REAL; 
 
VAR 
  Weight -> WeightModule.Ch1.Flow; 
  Flow   -> FlowMeter.Flow; 
  MeasuredValue : RealPointer; 
 
BEGIN 
  IF MeasuringModule = FlowModule THEN 
    MeasuredValue -> Flow 
      (* set pointer to Flow register in flowmeter *) 
  ELSE 
    MeasuredValue -> Weight; 
      (* set pointer to Flow register in weight mod ule *) 
 
  Display(MeasuredValue:6:1); 
    (* display flow from either flowmeter 
       or weight module as measured value *) 
 
  IF MeasuredValue > MaxFlow THEN ReduceFlow; 
    (* compare MaxFlow to the value that  
       MeasuredValue is pointing to *) 
 
The pointer itself must be declared to reside internally, but it is permitted to point to internal 
as well as external variables. 
 
A pointer type may be a part of another type, e.g. as a field in a record. 
 
  MyRecordType = Record 
    ASimpleVariable:  Integer; 
    PointerVariable:  POINTER TO REAL; 
    END; 



502 052 08 
 
 

36/144 Process-Pascal Manual 

 



502 052 08 
 

Manual Process-Pascal 37/144 

10 Constants 
The values 5, 1.25, -357 and TRUE, when written in a program, are called constants. A 5 in 
the program can only take the value 5, so 5 is a constant value. A constant cannot change 
value during program execution. 
 
A constant definition introduces an identifier as a synonym for a constant. The reserved word 
CONST heads the constant definition part. Constant values can be a number, a constant 
identifier, a character, a string or a structured constant (see the STRUCTURED CONSTANT 
chapter). 
 
The use of constant identifiers generally makes a program more readable and acts as a con-
venient documentation aid. It also facilitates a grouping of machine-dependent quantities at 
the beginning of the program, where they can be easily changed. It is only necessary to 
change the value of a constant in the CONSTANT declaration part, instead of changing the 
constant value in all the parts of the program where it is used. 
 
Examples of constant declarations: 
  CONST 
    Max_Valves = 100; 
    CursorStepX = 6; 
    PageSize = 50; 
    Blank = '          '; 
    Manual_Set = '1.0'; 
    WaitTime = 2.7; 
    AlarmOn = TRUE; 
    CrLf = #13#10; 
 
The compiler determines the type for the constant, depending on the syntax and range. 
However, the constant can be forced to take a specific type by using a type identifier in the 
declaration. e.g.: 
 
  PD340Type = WORD(56); 
 

 



502 052 08 
 
 

38/144 Process-Pascal Manual 

 



502 052 08 
 

Manual Process-Pascal 39/144 

11 Comments 
The readability of a Process-Pascal program can be improved by inserting blanks, blank lines 
and notes within it. Notes can be inserted to remind the programmer (or anyone else who 
reads or maintains the program) as to what certain variables mean, what certain functions or 
procedures do, and so on. These notes are known as COMMENTS.  
 
A program may contain as many comments as required and a comment may contain any se-
quence of characters. 
 
A comment begins with a left curly brace { or a left parenthesis and an asterisk, (*, and ends 
with a matching right curly brace } or a matching asterisk and a right parenthesis, *). A com-
ment that contains a dollar sign immediately after the opening { or (* is a compiler directive. 
See chapter 35.5. 
 
You can start a comment with a left curly brace {, which signals to the compiler to ignore eve-
rything until it sees the right curly brace }. This allows for a limited form of comment nesting, 
because a comment beginning with a { ignores all (* and vice versa. 
 
Example of a comment: 
  a:=7;  (* This is a comment for the statement *) 
 
 

 
It is suggested that one type of comment marker is used for program comments and compiler 
directives, and another type for temporary program parts. This method will prove very useful 
during program development and will make it easier to use comment nesting. 
 



502 052 08 
 
 

40/144 Process-Pascal Manual 

12 Expressions and Assignments 
 

12.1 Expressions 
An expression is a rule for calculating a value based on observing the conventional rules of 
algebra for left-to-right evaluation of operators and operands. 
 
The value that is calculated depends on the value of the constants and variables that are in-
cluded in the expression, and on the operators and functions that are used in the expression. 
 

12.2 Operators 
Expressions can utilise the normal arithmetic operators, logical operators and relational op-
erators. 
 

12.3 Arithmetic operators 
The arithmetic operators are: +, -, *, and /, where * is multiplication and / is division. 
 
These operators can be used on integer types, real types and timer types. The result type for 
these operations depends on the value type that is calculated. This is achieved by the use of 
automatic typecasting during compilation. 
 
Examples of expressions with arithmetic operators: 
 
 x + y 
 51.8 - 2 
 arc * number 
 10 / 2.45 
 
Furthermore, there are two operators, which only operate on integer operands. These are 
DIV and MOD. 
 
The DIV operator performs an integer division (i.e. the value is not rounded). 
 
Examples of the DIV operator: 
 

Expression Result 
15 DIV 6 2 
15 DIV 7 2 
-15 DIV 5 -3 

 
 
The MOD operator returns the remainder obtained by dividing its two operands. 
 
Examples of the MOD operator: 
 



502 052 08 
 

Manual Process-Pascal 41/144 

expression result 
15 MOD 6 3 
-15 MOD 7 -1 
15 MOD 5 0 

 

12.4 Logical operators 
The logical operators are NOT, AND and OR. The logical operators can operate on all integer 
types and on BOOLEAN types. 
 
The NOT operator performs a bitwise negation on the one operand. 
 
Examples of the NOT operator: 
 

Operand type  Expression Result 
byte NOT $00 $FF 
word NOT $0101 $FEFE 
boolean NOT TRUE FALSE 
boolean NOT FALSE TRUE 

 
 
The AND operator performs a bitwise And on the operands. 
 
Examples of the AND operator: 
 

Operand types Expression Result 
byte $55 AND $11 $11 
word $0202 AND $0101 $0000 
boolean TRUE AND TRUE TRUE 
boolean TRUE AND FALSE FALSE 

 
 
The OR operator performs a bitwise Or on the operands. 
 
Examples of the OR operator: 
 

Operand types Expression Result 
byte $55 OR $11 $55 
word $0202 OR $0101 $0303 
boolean FALSE OR TRUE TRUE 

 

12.5 Relational operators 
The relational operators are =, <>, >, <, >= ,<= and IN. 
 
The relational operators can be used on all simple data types: boolean, byte, char, integer, 
longinteger, longreal, real and timer. Different types can be compared, because of the auto-



502 052 08 
 
 

42/144 Process-Pascal Manual 

matic typecasting. Furthermore, strings can be compared according to the ordering of the ex-
tended ASCII character set. The IN operator is used to test for membership of a SET type 
operand. The result type is always a boolean, i.e. true or false. 
 
Examples of relational operators: 
 WaitTime <= TimeOut 
 Weight > SetPoint 
 PassWord <> PassCode 
 InputChar IN Digits 
 

12.6 String operator 
Process-Pascal allows the + operator to be used to append two string operands. The result of 
the operation StrA + StrB, where StrA and StrB are of string types, will be the addition of the 
strings, with the first character from StrB positioned after the last character from StrA, and 
where the length will be the integer addition of the two string lengths. If the resulting string is 
longer than the result type, it will be truncated to the max string length of the result type. 
 
The value of expressions can be converted into strings, by adding a size-specifier and a for-
mat-specifier to the expressions that are required to be converted. The syntax is as follows: 
 
  Str := expression : size-specifier : format-speci fier  
 
The size-specifier denotes the number of characters that are to represent the result of the 
expression, (including the decimal point, if any). The format-specifier is a value that defines 
how the result of the expression will be represented within the string. 
If result type for the expression is TIMER, REAL or LONGREAL, the format- specifier has the 
following meaning: 

0-.. Number of digits to be displayed to the right of the decimal point. 
-1 The variable is to be represented in floating-point. 
-2 The variable is to be represented with an exponent. For TIMER or REAL types, 

the exponent always has 2 digits and a sign. For a LONGREAL type, the ex-
ponent always has 3 digits and a sign. 

 
If the expression result is a simple type other than TIMER, REAL or LONGREAL, the  
format-specifier has the following meaning: 

0 Decimal representation with leading blank spaces. 
-3 Hexadecimal representation. 
-4 Binary representation. 
-5 Decimal representation with leading zeros. 

 
If the expression contains operators, it must be enclosed in brackets. 
 
Example:  
(* r is a real having the value 25.61 and str is a string[35] *) 
  Str := 'The value of r is : ' + r:5:2 ; 
 
After this operation Str holds the following charac ters: 



502 052 08 
 

Manual Process-Pascal 43/144 

The value of r is : 25.61 
 
Str:='The weight is : ' + (Weight / 1000.0):6:1 + ' T'; 
 
Weight is assumed to be a variable that holds the value for a weight in Kg. 
 

12.7 Operator precedence 
 
The operators are classified into 5 categories ordered by their precedence, with the first hav-
ing the highest precedence.  
 
The table below shows the order of operator precedence and should be referred to whenever 
there is any doubt as to the exact rules. 
 
 

1 Unary minus  ( minus with only one operand ). 
2 NOT operation ( boolean negation ) 
3 Multiplying operators ( *, /, DIV, MOD, AND ) 
4 Adding operators  ( +, -, OR ) 
5 Relational operators ( =, <>, >, >, <=, >= ,IN) 



502 052 08 
 
 

44/144 Process-Pascal Manual 

13 Statements 
A program is intended to perform some kind of action, using its internal and input/output data. 
The exact activity the program will perform, is described within statements. Statements de-
scribe algorithmic actions that can be executed. Statements are either simple or structured. 
Please refer to the STATEMENT syntax diagram in the chapter SYNTAX DIAGRAMS. 
 

13.1 Simple statements 
A simple statement is one that doesn't contain any other statements. Simple statements can 
be assignment statements, procedure statements or the empty statement. The empty state-
ment consists of no symbols and denotes no action. 
 

13.2 Assignment 
The most fundamental of statements is the assignment statement. It specifies that a newly 
computed value be assigned to a variable. The value is specified by an expression. The vari-
able may be a simple variable or an entire structured variable, located within the computer or 
within a module connected to P-NET. The assignment statement has the following form: 
 
    identifier := expression 
 
where the identifier is a variable identifier. The assignment statement is a simple statement. 
 
Examples of the assignment statement: 
  SetPoint:= Recipe[i].Parts / 100 * Scale 
  DrainValve:= ON 
  DigitalModule.Ch20.FlagReg[7]:= OFF 
  Weight_Timer:= 10.0 
 

13.3 Procedure statement 
Another simple statement is the procedure statement, which activates the named procedure, 
being a subprogram specifying another set of actions to be performed on some data.  
 
Examples of procedure statements: 
 
  PrintOut 
  Picture_11(No-Scroll) 
  StopMixing(MixerNo, StopCommand) 
 

See the chapter "PROCEDURES AND FUNCTIONS" for more details about procedures.  
 

13.4 Structured statements 
Structured statements are constructs composed of other statements that are either to be 
executed in sequence (compound statements), conditionally (conditional statements), or re-
peatedly (repetitive statements). 
 



502 052 08 
 

Manual Process-Pascal 45/144 

13.5 Compound statement (begin end) 
The compound statement specifies that its component statements are to be executed in the 
same sequence as they are written. The BEGIN and END symbols act as statement brack-
ets, and the statements are separated by semicolons. The semicolon is not a part of the 
statement, and is only used to separate them. An extra semicolon before an END does no 
harm, because an empty statement will be assumed between the semicolon and the END. 
 
Example of a compound statement: 
  BEGIN 
  SetPoint:=0; 
  ErrorMessage:=FALSE; 
  PrintOut; 
  END; 
 

13.6 Conditional statement (if then else) 
The IF statement specifies that a statement will only be executed if a certain condition is true. 
The condition is the result of a boolean expression which produces TRUE or FALSE. If the 
expression produces true, then the statement following the symbol THEN is executed. If the 
expression produces false and the ELSE part is present, then the statement following the 
symbol ELSE is executed. If the ELSE part is not present, no statement is executed. 
 
Examples of IF statements: 
  IF Sec = 60 THEN Min := Min + 1; 
 
  IF Min = 60 THEN  
  BEGIN 
    Hour := Hour + 1; 
    Min := 0 
  END; 
 
  IF x > z THEN 
    largest := x 
  ELSE 
    largest := z; 
 
Please note that a semi-colon is never used after the boolean expression or before an ELSE, 
because semicolons are used to separate statements, not to end statements. 
 
If more than one statement is to be executed after the expression, it is necessary to use the 
compound statement. See the second example above. 
 
IF statements can be nested in as many levels as required. However, it is advisable not to 
use too many levels, because it may prove difficult to avoid getting the different IF THEN and 
ELSE's mixed up. 
 
 



502 052 08 
 
 

46/144 Process-Pascal Manual 

13.7 Conditional statement (case) 
The CASE statement consists of an expression (the selector) and a list of statements, each 
prefixed with one or more constants (called case constants), or with the symbol ELSE. The 
selector can be of any ordinal type (boolean, byte, char, word or integer) but longinteger, and 
the ordinal values of the upper and lower bounds of that type, must be within the range 
-32768 to 32767. Each case constant must be associated with only one of the statements.  
 
The CASE statement either executes the statement prefixed by the CASE constant that is 
equal to the value of the selector, or one prefixed with a CASE range containing the value of 
the selector. If no such CASE constant or CASE range exists and an ELSE part is present, 
the statement following the ELSE is executed. If there is no ELSE part, nothing is executed. 
The ordering of the case constants has no influence on the selection for execution. 
 
The statement after the CASE constant can be a simple statement or a compound statement. 
When the statement has been executed, the program continues with the statement that fol-
lows the end of the CASE statement. 
 
Examples of CASE statements: 
  CASE Number OF 
    1: Figure := 2; 
    2: Figure := 45; 
    3, 4, 5: Figure :=0; 
    6..10: Figure := 100 
  END; 
 
  CASE Digit OF 
    '1': BEGIN 
       Value :=0; 
       Score :=2 
         END; 
    '2': Value :=3; 
    '3': BEGIN 
       Value :=7; 
       Score :=0; 
       PrintOut 
     END 
    ELSE PrintOut 
  END; 
 

13.8 While statement 
A WHILE 'expression' DO statement, which can be a compound statement, contains an ex-
pression that controls the repeated execution of a statement. 
 
The result of the expression that controls the repetition must be of type boolean. The state-
ment after the WHILE 'expression' DO, is executed zero or more times. The expression is 
evaluated before the statement is executed. The statement is executed as long as the ex-
pression is true, otherwise the WHILE statement terminates. If the expression is false at the 
beginning, the statement is not executed at all. 
 



502 052 08 
 

Manual Process-Pascal 47/144 

Because the expression is evaluated for each iteration, it is advisable to keep the expression 
as simple as possible. 
 
Examples of WHILE statement: 
  While BufferEmpty(KeyBoardBuffer) DO ChangeTask; 
 
  While TO1.AnalogIn > 35.0 DO 
  BEGIN 
    FeedBackControl; 
    ChangeTask 
  END; 
 

13.9 Repeat statement 
A REPEAT statement contains an expression that controls the repeated execution of a state-
ment sequence within that repeat statement. The general form for the repeat statement is:  
  REPEAT statement(s) UNTIL expression.  
 
Note that it is a sequence of statements that the repeat statement executes. 
 
The result of the expression controlling the repetition must be of type boolean. Unlike the 
WHILE statement, the statements after REPEAT are always executed at least once. Follow-
ing execution of the sequence of statements, the boolean expression is then evaluated. Re-
peated execution is continued until the expression becomes true.  
 
Since the expression is evaluated after each iteration, it is advisable to keep the expression 
as simple as possible. 
 
Examples of REPEAT statements: 
  REPEAT 
    ChangeTask; 
    Difference := SetPoint - TO1.AnalogIn; 
  UNTIL HeatControl = OFF; 
 
  REPEAT 
    Number := Number + 1; 
    LoopControl := LoopControl - 1 
  UNTIL LoopControl = 0; 
 
Note that the second example performs correctly for LoopControl > 0 when entering the loop, 
but if it is less than zero, the loop will repeat forever. 
 



502 052 08 
 
 

48/144 Process-Pascal Manual 

13.10 For statement 
The FOR statement indicates that a contained statement, which can be a compound state-
ment, is to be repeatedly executed while a progression of values is assigned to the control 
variable of the FOR statement. 
 
The FOR statement has the form: 
  FOR controlvariable := initialvalue TO finalvalue  DO statement 
 
The control variable must be of an integer type and declared within the same scope that the 
FOR statement appears. The initial value and the final value must be ordinal types com-
patible with the control variable. The initial value and the final value can be expressions. The 
initial value is evaluated only once and the final value is evaluated each time, before the 
statement contained by the FOR statement is executed. 
The statement contained by the FOR statement is executed once for every value in the range 
from initial value to final value. The control variable always starts off at the initial value.  
 
A FOR statement can use TO or DOWNTO for assigning values to the control variable. When 
a FOR statement uses TO, the value of the control variable is incremented by one for each 
repetition. If the initial value is greater than the final value, the contained statement is not 
executed. When a FOR statement uses DOWNTO, the value of the control variable is dec-
remented by one for each repetition. If the initial value is less than the final value, the con-
tained statement is not executed.  
 
The value of the control variable may be modified within the contained statement, without 
causing an error. 
 
The control variable is incremented/decremented when the contained statement has been 
executed. Immediately after the FOR statement has been executed, the value of the control 
variable is undefined. 
 
Examples of FOR statements: 
  FOR i:=1 TO NumberOfVAlves DO Valves[i].FlagReg[7 ]:=OFF; 
 
  FOR n:= Start TO Stop DO 
  BEGIN 
      Recipe[n].Parts :=0; 
      Recipe[n].Machine :=0 
  END; 
 
  FOR sl:= 50 DOWNTO 25 DO  
    IF Data[sl].AlarmFlag THEN Data[sl].Counter:=0;  



502 052 08 
 

Manual Process-Pascal 49/144 

13.11 Loop statement 
The LOOP statement specifies that the contained statements are to be executed repeatedly 
forever, and that the loop can only be broken by encountering a WHEN ERROR statement 
(see the INTERRUPT chapter). 
 
The LOOP statement has the following form:  
LOOP 

Statements 
END; 



502 052 08 
 
 

50/144 Process-Pascal Manual 

14 Array 
When handling great amounts of data, it is often convenient to store these in a structured 
way. An array is an example of a data structure where a group of data has been ordered into 
a certain pattern. An array is stored as a contiguous sequence of variables, all of the same 
type. 
 
Arrays have a fixed number of components of one type, the component type. The component 
type follows the word of  in the syntax for an array: 
 
  array_type : ARRAY[firstindex..lastindex] OF type  

14.1 One-dimensional arrays 
The index range specifies the number of elements. Valid index range specifier types include 
all ordinal types except longinteger and subranges of longinteger.  
 
The index range can consist of constant identifiers or constants. The index must not include 
negative values. 
 
Example of array declarations: 
  Data : ARRAY[1..MaxNumber] OF INTEGER; 
  SetPoints : ARRAY[FirstSetPoint..LastSetPoint] OF  REAL; 
 
An element within an array is referred to with an index, where the index can be an expres-
sion. The result of the expression must be an ordinal type, and the value should be within the 
specified index range. If the index value is less than the first index, then the first index is re-
ferred to. If the index value is greater than the last index, then the last index is referred to. 
If the index value is out of range, an error is generated. 
 
Examples of indexing an array: 
 
 Data[4]   denotes the fourth element in Data 
 Data[MaxNumber]  denotes the last element in Data 
 
The component with the lowest index is stored at the lowest memory address, as shown be-
low: 
 

 
The values of all elements in an array can be copied to a corresponding array by using only 
one assignment. 

 First 
Index 

Last 
index 

Lowaddress Highaddress 



502 052 08 
 

Manual Process-Pascal 51/144 

Example: 
  VAR  
    a,b :ARRAY[1..5] OF REAL; 
 
  BEGIN 
    FOR i:=1 TO 5 DO a[i]:=0;    (* init array *) 
 
    b:=a;            (* copy array *) 
 

14.2 Multidimensional arrays 
Each element within an array can itself be an array, where declared multiple index ranges will 
specify the number of elements, one range for each dimension of the array. 
 
The array can be indexed in each dimension by using the values within the corresponding in-
dex range, which means that the number of elements is the total number of values within all 
index ranges. The number of dimensions is unlimited. 
 
If an array’s component type is also an array, the result can be treated as an array of arrays 
or as a single multidimensional array. The following examples are interpreted in the same 
way by the compiler: 
 
  ARRAY[1..100] OF ARRAY[1..5] OF REAL 
  ARRAY[1..100,1..5] OF REAL 
 
An element within a multidimensional array is referred to using a number of indexes, corre-
sponding to the number of dimensions in the array, and where each index can be an expres-
sion. 
 
Examples of indexing a multidimensional array: 
 
Data[2,4] denotes the fourth element in the second array element 
 Data[2][4] denotes the same element as above. 
 
Elements within multidimensional arrays are stored in order of an increasing right-most di-
mension first. In the above example, this means that the values are stored in the following or-
der: [1,1], [1,2], [1,3], [1,4], [1,5], [2,1], [2,2], [2,3], [2,4], [2,5], [3,1], [3,2], [3,3] and so on. 

1,1 1,2 1,3 1,4 1,5 
2,1 2,2 2,3 2,4 2,5 
3,1 3,2 3,3 3,4 3,5 
4,1 4,2 4,3 4,4 4,5 

 



502 052 08 
 
 

52/144 Process-Pascal Manual 

15 Record 
A record is a structured data type, and as with the array type, it comprises a set of compo-
nents. A component in a record is called a field. A field can hold values of a certain type and, 
unlike array types, each field can be of a different type. The type for a field can be a simple 
type, or a structured type, i.e. an array type or a record type. 
 
The record type declaration specifies a type for each or collection of fields, together with an 
identifier that names the field. The declaration for a record begins with the symbol RECORD 
and terminates with the symbol END. A field list may contain a fixed part and a variant part. 
 
 

 
 

 
The fixed part of a record type is specified within a list of fixed fields, giving an identifier and a 
type for each. Each field contains information that is always retrieved in the same way. 
 
Example of a record type: 
  Square = RECORD 
      x , y  : INTEGER; 
      Area   : REAL; 
      END; 
 

15.1 Variant part 
The variant part of a record type declaration provides memory space for use by more than 
one list of fields, so that information can be accessed in more ways than one. Each list of 
fields is a variant. The variants overlay the same space in memory, and all fields of all vari-
ants can be accessed at all times. 
 
Each variant is identified by at least one constant. All constants must be distinct, and of an 
ordinal type compatible with the tag-field type. Variant and fixed fields are accessed in the 
same way. 



502 052 08 
 

Manual Process-Pascal 53/144 

Example of a record type with a variant part: 
 
  TFigure = (Rectangle,Triangle,Circle); 
 
  symbol = RECORD 
    x,y : byte; 
    CASE Figure:Tfigure OF 
      Rectangle: (height, width : INTEGER); 
      Triangle : (side1, side2: REAL); 
      Circle   : (radius : INTEGER); 
    END; 
 
The record is shown below with the different values for the tag-field. 
x Y figure  height  width  not used   

    rectangle                   
            
x Y figure  side1    side2    

    triangle                   
            
x Y figure  radius  not used     

    circle                   
 
 

15.2 Accessing fields 
To access a field within a record, the variable identifier for the record type is given first, fol-
lowed by the field identifier. A point separates the field identifier and the record identifier. 
 
Example of accessing a field in a record type: 
 
 Let FORM be a record of the previously declared type SYMBOL. The fields are ac-

cessed in the following way: 
  VAR 
    Form : Symbol; 
 
  BEGIN 
    Form.x := 25; 
    IF Form.x = Form.y THEN ProcesSquare; 
    Form.Height := 34; 
    Form.Side2 := 12.22; 
    Form.Radius := 200; 
 



502 052 08 
 
 

54/144 Process-Pascal Manual 

16 Interface 
An interface type is used to define an interface module or a channel within an interface mod-
ule, as a whole structured variable. An interface module is constructed with a number of 
channels, where each channel has 16 accessible registers. The channels can be of the same 
type or of different types, depending on the specific interface module. 
 
An interface type has a fixed number of components that can be of different types. An inter-
face type can define a CHANNEL, if all the components in the type declaration are of simple 
type. An interface type can define an INTERFACE module, if all the components in the type 
declaration are of interface type or the type 'Unused'. The first component in the definition of 
a channel, defines register 0, the second component defines register 1 and so on. The first 
component in the definition of an interface module, defines channel 0, the second component 
defines channel 1 and so on. 
 

 
 

 
 
The interface inform DEVICETYPE is followed by a constant that denotes the module type. 
DEVICETYPE must be declared. 
 
The interface inform OLDTYPE denotes that the device is of an old type, which means that 
the variables of real type are stored in a different format. Conversion to the IEEE format is 
performed by the operating system in the controller during program execution, and the user 
does not need to consider taking any action to achieve this. 
 
The interface inform ADR4BYTE denotes the length of the SoftWire No. / abs. address when 
accessing the module. The length of the address can be 4 bytes or 2 bytes, denoted by 
Adr4Byte or Adr2Byte respectively, where Adr2Byte is the default. 



502 052 08 
 

Manual Process-Pascal 55/144 

 
The interface inform NOBITADDRESS denotes that the module is not able to understand bit 
addressing. 
 
The interface inform NOOFFSET denotes that the module is accessed with an address with-
out any offset. 
 
The interface inform EXTENDEDPNET denotes that the module understands com-
plex/extended P-NET addressing, e.g. a controller. 
 
The interface inform NOOFFSETINLONG denotes that the module will not make use of the 
offset value in a longload or longstore command, i.e. the module calculates the offset value 
for itself. 
 
Example of an interface type declaration: 
PD3221 = INTERFACE [ DeviceType: 3221; ObjectType =  1000; 
                     Capabilities = NoBitAddress, N oOffsetInLong ] 
    Service        : ServiceCh; 
    Digital_IO_1  : DigitalCh; 
    Digital_IO_2  : DigitalCh; 
    Digital_IO_3  : DigitalCh; 
    Digital_IO_4  : DigitalCh; 
    Digital_IO_5  : DigitalCh; 
    Digital_IO_6  : DigitalCh; 
    CommonIO      : CommonIO8Ch; 
    Analog_In_1   : AnalogInCh; 
    Analog_In_2   : AnalogInCh; 
    Current_Out   : CurrentOutCh; 
    PID           : PIDCh; 
    Calculator    : CalculatorCh; 
    PulseProcessor: PulseProcCh; 
END; 
 

16.1 Accessing fields 
To access a field within an interface type, the variable identifier for the interface type is given 
first, followed by the field identifier. The field identifier and the interface variable identifier are 
separated by a point. 
 
It should be noted that for variables of interface type, it is only possible to access one register 
at a time, and not an entire channel or module. 
 
Example of accessing a field in a variable of interface type: 
VAR 
  TempModule : PD3221 AT NET: (1,64); 
 
BEGIN 
  IF TempModule.Analog_In_1.AnalogIn >= 45.0 THEN  
    OverHeat :=TRUE; 
  DigModule.Ch21.Flagreg[7]:=OFF; 
  While TempModule.Analog_In_1.AnalogIn >= 35.0 DO 



502 052 08 
 
 

56/144 Process-Pascal Manual 

    ChangeTask; 
 
Also see the examples in the Variable Declaration chapter about how to access variables in 
external devices. 



502 052 08 
 

Manual Process-Pascal 57/144 

17 Buffer 
A buffer can be considered as a collection of elements that are held in a queue, where ele-
ments are placed at the back of a queue when a variable is assigned to the buffer, and where 
the elements are removed from the front of the queue, when the buffer is assigned to a vari-
able. This concept is known as FIFO (First In First Out). 
 
When operating with buffers, the insertion and removal of elements applies to the entire ele-
ment. This means that if the element type is a structured type, access a specific field cannot 
be directly accessed from the buffer. Instead, the whole element must be assigned to a vari-
able of the same type, and then access to a particular field in that variable can be made. 
 
Buffers have a fixed number of elements of one type, the element type. The element can be 
of any type except a BUFFER type, a REALDATE type or a TIMER type. 
 
The syntax for a buffer type is: 
 

 
 
The constant denotes the buffer size, being the max. number of elements in the buffer. 
 
When an element has been read out from a buffer, it is deleted from the buffer and cannot be 
read again. 
 
Buffers must always be initiated before they are used for the first time. This is achieved using 
the standard procedure InitBuffer (buffername). 
 
Before a variable is assigned to a buffer, the program should first check whether the buffer is 
full. This is achieved using BufferFull (buffername), which is a standard function. The function 
returns a boolean, which will be TRUE if the buffer is full. If a variable is assigned to a buffer, 
and the buffer is already full, an error is generated, and the value will not be stored in the 
buffer, until an element has been removed from the buffer. 
 
Before a buffer is assigned to a variable, the program should first check whether the buffer is 
empty. This is achieved using BufferEmpty(buffername), which is also a standard function. 
The function returns a boolean, which will be TRUE if the buffer is empty. If an empty buffer is 
assigned to a variable, an error is generated, and the variable will not be assigned a value 
until at least one element has been inserted in the buffer. 
 
If a variable of the type BUFFER is a component of a complex variable, the buffer component 
variable can only be used internally within the controller. 
(P-NET restriction). 



502 052 08 
 
 

58/144 Process-Pascal Manual 

 
Examples of buffer types: 
  TestVarDef = RECORD 
        Var1 :INTEGER; 
        Var2 :REAL; 
        Var3 :STRING[7]; 
         END; 
    TestVarBuf = Buffer[10] OF TestVarDef; 
 
Examples of statements using buffers: 
 
 
InitBuffer(TestVarBuf); 
 
IF NOT BufferFull(TestVarBuf) THEN TestVarBuf:=Test Var; 
(* insert an element in the buffer if it is not ful l *) 
 
IF NOT BufferEmpty(TestVarBuf) THEN TestVar:=TestVa rBuf; 
(* remove an element from the buffer if there  
   is at least one element *) 
 
WHILE BufferEmpty(KeyboardBuffer) DO ChangeTask;  
 
IF NOT BufferFull(Port_1.OutputBuffer) THEN Port1Ou tput:=HeadLine; 
 
IF NOT BufferEmpty(Port_1.InputBuffer) THEN  
  BarCode:= Port_1.InputBuffer; 



502 052 08 
 

Manual Process-Pascal 59/144 

18 String 
A string is a sequence of characters with a dynamic length attribute (depending on the actual 
character count during program execution), and a constant size attribute from 1 to 255.  
 
The syntax of a string type: 
 
 

 
 
 
A string can be classified as an array of characters, using the following declaration:  
  str = ARRAY[0..MaxStringLength] OF CHAR 
 
Characters in a string can be accessed as components of an array. 
 
The length attribute's current value is found in str[0]. 
 
MaxStringLength is a constant in the range 0 to 255. 



502 052 08 
 
 

60/144 Process-Pascal Manual 

19 Bitmap 
A bitmap defines a pixel-image as a rectangle having a width and a height. The width and 
height of a symbol is given in pixels, and are contained within the first elements of a bitmap 
type. Each of the following elements contains a byte to represent a line, or part of a line, 
within the pixel-image, where each bit represents the state of a pixel, starting with the most 
significant bit (bit7). This means that by including an ordered set of bytes within the bitmap, 
the inherent binary pattern will represent the pixel-image. 
 
 
A bitmap type is a structured type, characterised by its component type, which is an array of 
booleans, and a size. A bitmap type is used to create symbols and characters that can be 
displayed on a screen. A charactergenerator is defined as an array of bitmap types. 
 
Process-Pascal has three bitmap types: smallbitmap, largebitmap  and videobitmap .  
 

 
 
 
The size denotes the number of elements (bytes) representing the symbol. 
 
A formula for calculating the size is given by: 
  If width MOD 8 = 0 then a:=0 else a:=1; 
  size:= ((width DIV 8) + a) * height; 
 

19.1 The smallbitmap type 
The smallbitmap type defines a bitmap, where the size of the symbol is less than or equal to 
255 * 255 pixels (width * height). 
 
The first byte holds the bitmap-width in pixels, and the second byte holds the bitmap-height in 
pixels. 
 
A smallbitmap is referenced to the pen position on the screen at the upper left corner of the 
bitmap. 
 
Example of a smallbitmap type followed by a constant declaration: 
TYPE 
  Dottype = SMALLBITMAP[1]; 
 
CONST 
  Dot = Dottype($01, $01, $80); 
 



502 052 08 
 

Manual Process-Pascal 61/144 

The example shows a smallbitmap type with a size of '1', which means that the pixel-image 
will be contained within one byte. A constant defined as a smallbitmap with width '1' and 
height '1', is a single pixel and the pixel is on, i.e. a dot. 
 

19.2 The largebitmap type 
The largebitmap type defines a bitmap, with a size for the symbol (width * height), and an off-
set to a reference point. 
 
The first two bytes hold the bitmap-width in pixels, and the third and fourth bytes hold the bit-
map-height in pixels.  
 
The fifth and sixth bytes hold an offset to a reference point in the x-direction. The seventh and 
eighth bytes hold an offset to a reference point in the y-direction. 
 
The lowest byte is the MSB for the above mentioned height, width and reference. 
 
The bitmap will be displayed with its reference point located at the pen position on the screen 
(Pen.X, Pen.Y). 
 
Example of a largebitmap type followed by a constant declaration: 
TYPE 
  Triangletype = LARGEBITMAP[4]; 
 
CONST 
  Triangle = Triangletype( $00, $05, $00, $04, $00,  $02, $00, $02, 
                           $20, $F8, $70, $20); 
 
The diagram shows the reference point ( * ) corresponding to the pen position for a largebit-
map. 

 

19.3 The videobitmap type 
The videobitmap type is specifically used for defining video-ram, where the size denotes the 
capacity of the video-ram. See section SCREEN DEFINITION, for how to use videobitmap 
types. 

Width

Height

Reference Y

Reference X
x (Pen.AbsX, Pen.AbxY))



502 052 08 
 
 

62/144 Process-Pascal Manual 

20 Set 
A set type provides a compact structure for recording information about the existence or com-
bination of a collection of values having the same ordinal type. 
 
A set type is a bit array, where each bit indicates whether an element is in the set or not. The 
maximum number of elements in a set is 256, and a set always occupies 32 bytes of RAM. A 
set is also a random-access structure whose elements all have the same base type. 
 
A variable of a set type can hold from none to all values of the set. 
 
The base type must not have more than 256 possible values, and the ordinal values of the 
upper and lower bounds of the base type must be within the range of 0 to 255. 
 
Examples of set types: 
  Smallinteger = SET OF 0..50; 
  Digit = SET OF '0'..'9'; 
  Letter = SET OF 'A'..'Z'; 
  Colour = SET OF (red, blue, yellow, white, green,  black); 
 
The order of elements in a set is not significant and repetition of elements is allowed. The set 
(3,5..9,2,6) is equal to (2..3,5..9). 
 
Adding new members to a set variable is simply done by adding the ordinal values to the set 
as follows: 
  ColourSet := ColourSet + [Red, Blue, Green]; 
 
Removing members from a set variable is simply done by subtracting the ordinal values from 
the set as follows: 
  ColourSet := ColourSet - [Yellow, Black]; 
 
The IN operator is used to test for membership of a SET type operand. It returns true when 
the value of the operand is a member of the set, otherwise it returns false. 
 
Example: 
  IF Blue IN ColourSet THEN Display('Blue is found' ); 
 
  (* test if Blue is a member of the SET variable C olourSet *) 



502 052 08 
 

Manual Process-Pascal 63/144 

21 User defined Types 
Process-Pascal has a number of pre-declared data types, which have all been described in 
the previous chapters. Using these types, its possible to declare new data types. 
 
A user-defined data type is declared in the type declaration part. The name of the user-
defined data type is the used identifier. 
 
A user-defined data type can contain a previously declared type. 
 

21.1 Subrange types 
A subrange type is a range of values from an ordinal type. The definition of a subrange type 
specifies the least and the largest value in the subrange and includes all values in between 
these two values. 
 

 
Both constants must be of the same ordinal type and the first one must be less than or equal 
to the last one. 
 
A subrange type is mainly used to define an index range in an array structure. 
 
Examples of subrange types: 
  Index20 = 1..20;  (* subrange of Integer *) 
  Cap_Letter = 'A'..'Z';  (* subrange of Char *) 
 
There is no index check on subrange types. 
 

21.2 Enumerated types 
Enumerated types define ordered sets of values by enumerating the identifiers that denote 
these values. Their ordering follows the sequence in which the identifiers are enumerated. 
Each identifier in the list is declared as a constant for the block in which the enumerated type 
is declared. The data type of this constant will be of the enumerated type being declared. 
 

 
 
An enumerated constant's ordinality is determined by its position in the identifier list in which it 
is declared. The first enumerated constant in a list has an ordinality of 0, the next has ordinal-
ity 1, and so on. 



502 052 08 
 
 

64/144 Process-Pascal Manual 

 
Example of an enumerated type: 
  Status = ( Wait, Go, Left, Right, Stop) 
 
Given these declarations, Left  is a constant of type Status . 
 
When the Ord  function is applied to an enumerated type's value, Ord  returns an integer that 
shows the position the value occupies with respect to the other values of that enumerated 
type. In the example above, Ord(Go) returns 1. 



502 052 08 
 

Manual Process-Pascal 65/144 

22 Structured Constants 
A constant can be a structured type. The declaration of a constant of a structured type spe-
cifies the value of each of the elements in the structure. 
 
The structure of a constant can be in the form of an array, a record, a set or a string type. 
Structured constants, which contain the types buffer or timer are not allowed. 
 

22.1 Array constants 
A declaration of an array constant specifies the values of the components. These are en-
closed in parentheses and separated by commas. 
 
Example of an array constant: 
TYPE 
  MonthsType = ARRAY[1..12] OF STRING[3]; 
 
CONST 
  Months=MonthsType([1]:'Jan', [2]:'Feb', [3]:'Mar' , [4]:'Apr', 
                    [5]:'May', [6]:'Jun', [7]:'Jul' , [8]:'Aug', 
                    [9]:'Sep', [10]:'Oct', [11]:'No v', [12]:'Dec') 
 
This example defines an array constant MONTHS, which can be used to print out a 3 charac-
ter string having the text corresponding to the month number.  
 
If HEADLINE is defined as a string, the following statement  
  HeadLine:=Months[4]; 
 

will produce the same result as 
  HeadLine:='Apr'; 
 

Another example of an array constant is a character generator. The standard character gen-
erator, named CH6X8.CHR, is an array of bitmaps, where each character is defined as a 
smallbitmap. The ASCII value for the character is used as an index in the array constant. 
TYPE  
  Character6x8 = SMALLBITMAP[8];  
  CG6x8 = ARRAY[$20..$9F] OF Character6x8;  
  
CONST  
   Ch6x8 = CG6x8  
        ([$20]:($06,$08,$00,$00,$00,$00,$00,$00,$00 ,$00), (*space*) 
         [$21]:($06,$08,$20,$20,$20,$20,$00,$00,$20 ,$00), (* ! *) 
         [$22]:($06,$08,$50,$50,$50,$00,$00,$00,$00 ,$00), (* " *) 
         [$23]:($06,$08,$50,$50,$F8,$50,$F8,$50,$50 ,$00), (* # *) 
         [$24]:($06,$08,$20,$78,$A0,$70,$28,$F0,$20 ,$00), (* $ *) 
         [$25]:($06,$08,$C0,$C8,$10,$20,$40,$98,$18 ,$00), (* % *) 
         [$26]:($06,$08,$60,$90,$A0,$40,$A8,$90,$68 ,$00), (* & *) 
         [$27] to [$9F] is not shown in this exampl e   



502 052 08 
 
 

66/144 Process-Pascal Manual 

22.2 Record constants 
A declaration of a record constant specifies the values of the components, separated by com-
mas and enclosed in parentheses. 
 
Examples of a record constant: 
  TYPE 
    RecipeType = RECORD 
          SesameSeed   : REAL; 
          RyeFlour       : REAL; 
          Water          : REAL 
    END; 
 
  CONST 
    RecipeDefault = RecipeType(SesameSeed : 10.0, 
            RyeFlour : 65.0,  Water : 25.0); 
 
 
A constant can also be a combination of a record type and an array, as shown in the follow-
ing example: 
  TYPE 
    rec1 = RECORD  
      Field1 : INTEGER; 
      Field2 : REAL; 
    END;  
 
    arr = ARRAY[1..2] OF rec1; 
 
  CONST 
    ArrConst = rec1( [1].Field1: 0, [1].Field2: 2.3 4, 
          [2].Field1: 4, [2].Field2: 12.40); 



502 052 08 
 

Manual Process-Pascal 67/144 

23 Procedures and Functions 
When trying to resolve a problem and the program size begins to increase, it is often con-
venient to break it into a number of partial problems and solve each one individually. The 
concept of PROCEDURES and FUNCTIONS provides the means to divide each part of a 
problem into sub-programs.  
 
Procedures and functions are useful in many situations, and as a guide, the following points 
should be considered: 
 1. When a certain sequence of statements is used more than once in the program, 

it is likely that these could be contained within a procedure. This not only con-
serves typing time, but also the code size in memory. 

 2. There should be no hesitation in formulating an action as a procedure or a func-
tion, even when it may only be called once, if doing so enhances the readability 
of the program. In general, shorter blocks are easier to understand than long 
ones. 

 3. General problems such as sorting, print out, weight batching and so on, should 
be solved in a procedure or a function. The CHANGETASK procedure can be 
called anywhere within a procedure or function, so a single procedure or function 
can remain active for hours or days without affecting the other tasks. 

 
Procedures and functions can be global or local. 
 
A particular global procedure or function can be called from a number of independent 
TASKS. This means that the same procedure or function can solve a problem for many tasks 
simultaneously, without affecting the other tasks (unless they are using the same global vari-
ables). 
 
Before calling a procedure or function within a program, it is required that the procedure or 
function identifier be declared before it is used. This can, in some cases, be impossible. To 
solve this problem, procedures and functions can be "FORWARD" declared. This Forward 
declaration provides information to the compiler that the identifier needs to be used now, 
but the declaration will be found later in the program. A FORWARD declaration can be 
placed anywhere in the program where it is allowed to declare procedures and functions. 
 
Example of a forward procedure declaration: 
  Procedure CloseValve(ValveNo : byte); FORWARD; 
… 
  Procedure CloseValve; 
  Begin 
    … 
  End; 
 

23.1 Procedures 
A procedure declaration involves defining a section of program and then associating this with 
a procedure identifier, so that it can be activated using a procedure call within a later state-
ment. The declaration has the same form as a program, consisting of a heading and a block. 
Variables declared within a procedure are said to be local variables, and these variables are 



502 052 08 
 
 

68/144 Process-Pascal Manual 

undefined at the beginning of the statement part, whenever the procedure is activated. The 
local variables do not exist any further once the procedure has terminated. 
 
Examples of procedures: 
  Procedure CloseValves; 
  BEGIN 
  InletValve[7]:=OFF; 
  OutletValve[7]:=OFF; 
  ShuntValve[7]:=OFF; 
  ValvesClosed:=TRUE 
  END; 
 
  Procedure WaitOneMinute; 
  VAR 
      DelayTimer : TIMER; 
  BEGIN 
      DelayTimer:=60; 
      Repeat 
     ChangeTask 
      Until DelayTimer <= 0; 
  END; 
 
If the procedure is required to operate on various parameters, these parameters must be in-
troduced within the procedure heading, as part of the procedure declaration. The parameter 
details are inserted immediately after the procedure identifier, as a formal parameter list.  
 
The parameter list includes the name of each formal parameter followed by its type.  
 
A procedure statement, characterised as one that includes the procedure’s identifier, together 
with any expected parameter values or identifiers, activates the procedure using the parame-
ters given. These parameters are called actual parameters, and are substituted for the corre-
sponding formal parameters that were defined in the procedure declaration. The correspon-
dence between the formal parameters (in the procedure heading) and the actual parameters 
(in the procedure statement), is established by the positioning of the parameters in the list of 
actual and formal parameters. The inclusion of parameters therefore provides a substitution 
mechanism that allows a process to be repeated using a variety of arguments. 
 
There are two kinds of parameters: value parameters and variable parameters. The kind of 
parameters to be used is determined by the structure of the formal parameter list in the pro-
cedure heading. Both kinds can be used within the same parameter list. 
 

23.2 Reference parameters 
When the symbol VAR heads a parameter section of the list, the parameters of this section 
are said to be variable parameters. In this case, the actual parameters (in the procedure 
statement) must be variables. The correspondingly positioned formal parameters (in the pro-
cedure heading) become synonyms for the actual variables throughout the entire execution of 
the procedure. Any operation involving the variable parameters is then performed directly on 
the actual parameters. The procedure may then change the value of these actual variables 



502 052 08 
 

Manual Process-Pascal 69/144 

through assignments. Hence, a variable parameter can be used to represent the result of a 
computation. 
 
Example to show the differences between value and variable parameters: 
TYPE 
  Arr7 = ARRAY[1..7] OF INTEGER; 
VAR 
  Arr : Arr7; 
  i : INTEGER; 
 
Procedure ValEx(a,b:integer);  (* proc. with value parameters *) 
BEGIN 
  a:=3; 
  b:=7;          (* point B *) 
END; 
 
Procedure VarEx(VAR a,b:integer); (* proc. with var iable parame-
ters*) 
BEGIN 
  a:=3; 
  b:=7;          (* point C *) 
END; 
 
TASK Example; 
BEGIN 
  FOR i:=1 TO 7 DO Arr7[i]:=i; 
  i:=10;          (* point A *) 
  ValEx(i,Arr7[4]); 
  VarEx(i,Arr7[4]); 
END; 
When the program executes, the data memory will be as follows: 
a was initially a copy of i , but the assignment altered it to 3. Should follow “Point B:” 
 

 
 
b was initially a copy of Arr7[4] , but the assignment altered it to 7. Should follow “Point C:” 

1 765432 10

Arr7[1] Arr7[7] i

1 765432 10

Arr7[1] Arr7[7] i

7 3

ab

Point A:

Point B:



502 052 08 
 
 

70/144 Process-Pascal Manual 

 

 
 
 
 
Example of a procedure that controls a weight batching with a CHANGETASK procedure 
statement included: 
PROCEDURE WeightBatching(    FirstSilo: INTEGER; 
                             LastSilo : INTEGER; 
                             VAR DataSilo : Silos; 
                             VAR DoseValve: IOChann els; 
                             VAR Weight: WeightChan nel ); 
VAR 
  i : INTEGER; 
  DelayTimer: TIMER; 
BEGIN 
  FOR i:=FirstSilo TO LastSilo DO 
  BEGIN 
    Weight.Weight1:=0.0; 
    DoseValve[i].FlagReg[7]:=On; 
    REPEAT 
      WeighOut:=Weight.Weight0; 
      ChangeTask; 
    UNTIL DataSilo[i].WeighOut <= DataSilo[i].Setpo int- 
                                             DataSi lo[i].Tails; 
    DoseValve[i].FlagReg[7]:=Off; 
    DelayTimer:=5; 
    WHILE DelayTimer >= 0 DO 
    BEGIN 
      ChangeTask; 
      DataSilo[i].WeighOut:=Weight.Weight0 
    END 
  END 
END; 

23.3 Value parameters 
When no symbol heads a parameter section of the list, the parameters of this section are said 
to be value parameters. In this case, the actual parameters (in the procedure statement) must 
be an expression (of which a variable is a simple case). The correspondingly positioned for-
mal parameters represent local variables within the activated procedure. This means that the 
local variables receive the current values of the actual parameters (the value of the expres-
sion at the time of procedure activation), as initial values. The procedure may then change 
the value of these local variables through assignments, but this will not affect the value of the 

1 765732 3

Arr7[1] Arr7[7] i

ab

Point C:



502 052 08 
 

Manual Process-Pascal 71/144 

actual parameters. Hence, a value parameter can never be used to represent the result of a 
computation performed by a procedure. 
 
A degree of caution should be applied when working with large data structures (e.g. an array 
with a large number of elements). The copying operation (the value parameters are copied to 
the local variables in the procedure), could be relatively expensive in computing time, and the 
amount of data storage needed to hold the copy would be as large as the value parameter it-
self (the array). When the procedure terminates, the data storage used by the local variables 
is released. 



502 052 08 
 
 

72/144 Process-Pascal Manual 

23.4 Functions 
Functions are program parts (in the same sense as procedures), which compute a single or-
dinal or real value for use in the evaluation of an expression. The declaration has the same 
form as a program, having a heading and a block. 
 
The function heading specifies the identifier for the function, the formal parameters (if any), 
and the function result type. The result data type for a function can only be a simple type. The 
variable and value parameters are discussed in the previous section PROCEDURES. 
 
A function call is made by using the function's identifier and any actual parameters required 
by the function. A function call appears as an operand in an expression. When the expression 
is evaluated, the function is executed, and the value of the operand becomes the value re-
turned by the function. 
 
A function is generally used when only a single function value needs to be returned.  
 
The block within the function declaration should contain at least one executed assignment 
statement that assigns a value to the function identifier. This assignment returns the result of 
the function. The result of the function is the last value assigned before the function ter-
minates. 
 
Example of a function: 
  FUNCTION Max(VAR a:IntegerArray):INTEGER; 
  VAR 
    i, x : INTEGER; 
 
  BEGIN 
    x:=a[1]; 
    FOR i:=2 TO 10 DO 
      IF x < a[i] THEN x:=a[i]; 
    Max:=x 
  END; 
 
The function returns the largest value in an array and it is called in a statement by its iden-
tifier. 
 
  IF Max(Numbers) > 100 THEN ......... 
 
  LargestNumber:=Max(Numbers); 



502 052 08 
 

Manual Process-Pascal 73/144 

24 Scope 
In Process-Pascal, all identifiers need to be declared before they can be used or accessed. 
This means that an identifier is accessible within the block in which is has been declared and 
in any following blocks. 
 

 
 
 
 
Only the variables a, b, c, x and y are avail-
able to proc_1 . 
 
 
 
 
The variables a, b, c, i, m and n are available 
to task name1 . 
 
The variables a, b, c, i, m and n are available 
to proc_2 , where the variable i is the local 
variable for the procedure. The variable i for 
the task is not available to proc_2 . 
 
 
 
The variables a, b, c, l and n are available to 
task name2 . n is not the same as n in task 
name1 . 
 
The variables a, b, c, l, n and i are available 
to proc_3 . 
 
The variables a, b, c, l, n, i and k are avail-
able to proc_4 . 
 
 

 

Program name;

VAR a,b,c 
        global variable

Procedure proc_1

VAR x,y 
        global procedure 

Task name1;
VAR i,m,n 
        local variable

Procedure proc_2

VAR i 
        local procedure

Begin 
End;

Procedure proc_3
VAR i 
        local procedure

Procedure proc_4
VAR k 
          local procedure

Begin 
End;

Task name2;

VAR l,n 
         local variable

End.



502 052 08 
 
 

74/144 Process-Pascal Manual 

25 Interrupt 
Process-Pascal offers facilities for generating interrupts and executing interrupt tasks. There 
can be 32 different interrupts, each denoted by a number in the range from 0 to 31. 
 
An interrupt can be generated by accessing a specific global variable, which has been de-
clared with a softwireinterrupt connection, given by an interrupt number. Interrupts can only 
be generated by internal variables. A task can be declared as a softwireinterrupt task with an 
interrupt connection. This means that an interrupt task with an interrupt number, is executed 
when the variable with the same interrupt number is accessed.  
 
The interrupt condition for accessing the variable is set to “any access" as default. The inter-
rupt condition could be specified to be one or several of the following: INTERNLOAD (the 
controller itself loads the variable), INTERNSTORE (the controller itself stores a value in the 
variable), EXTERNLOAD (the variable is loaded via the P-NET from another controller or PC) 
or EXTERNSTORE (a value is stored in the variable via the P-NET). 
 
If more than one interrupt occurs at the same time, the corresponding interrupt tasks will be 
executed in priority, according to the interrupt number, i.e. the highest number will have the 
highest priority. 
 
Example of a variable declaration with interrupt: 
VAR 
  KeyboardBuffer :Buffer[10] OF BYTE SOFTWIREINTERR UPT:0 
          [INTERNSTORE, EXTERNSTORE]; 
 
The above declaration of the keyboardbuffer connects the variable to interrupt number 0. The 
interrupt condition is set for any internal or external store in the variable. The priority of this in-
terrupt is set to the lowest priority. 
 
Softwire interrupts can be ENABLED, i.e. allowed to interrupt, or DISABLED, not allowed to 
interrupt, from within cyclic tasks. ENABLE(SoftwireInterrupt) is a standard procedure to be 
used in cyclic tasks, to allow SoftWire interrupt tasks to interrupt the cyclic task. In all cyclic 
tasks, SOFTWIREINTERRUPT TASKs are ENABLED as default after a reset. If interrupt is 
disabled or enabled in a procedure or in a function, the interrupt status is automatically set 
back to the state it held before the call, after the procedure or function has been completed. 

 



502 052 08 
 

Manual Process-Pascal 75/144 

DISABLE(SoftwireInterrupt) is a standard procedure that inhibits any SoftWire interrupt in a 
task. The variables with an interrupt connection are not affected by DISABLE, but if a variable 
with an interrupt condition has been accessed while the interrupt is disabled, the correspond-
ing interrupt task will be activated if the interrupt is enabled again. 
 
It is possible to relate a variable of type BUFFER to another variable with an interrupt connec-
tion. Each time an interrupt related to the variable is generated, an element is stored in the 
buffer variable. The buffer element holds information on the SWNo which caused the interrupt 
(there might be more variables with the same interrupt) and an offset in bytes to the part of 
the variable which was accessed.  
 
The buffer element is of the following type: 
  IntRecordType =  RECORD 
          SWNo  :  INTEGER; 
          Offset  : INTEGER; 
        END; 
 

Example for connecting the buffer to an interrupt variable: 
  VAR 
    IntBuffer:  Buffer[10] OF IntRecordType; 
    DataBase :  DataBaseType SOFTWIREINTERRUPT: 3 
          [ExternStore, InternStore] IntBuffer; 



502 052 08 
 
 

76/144 Process-Pascal Manual 

26 WHEN ERROR 
Some built in facilities in Process-Pascal provide the possibility of using data that is distrib-
uted throughout a P-NET fieldbus system. To protect programs against any erroneous data 
that might occur externally as well as internally within a system, Process-Pascal offers an 
automatic error detecting system.  
 
When using a network, such as P-NET, to communicate with interface modules or other con-
trollers, errors can occur. The possible appearances of such errors are called INTERFACE 
ERRORS, and might be transmission errors relating to the network, or data errors relating to 
the interface modules. An error in a module can be related to the whole module or a single 
channel. 
 
When executing a program, various run-time errors might be generated, which have been 
caused by the operator or the programmer. These errors will NOT stop program execution, 
but will generate an error code. 
 
The automatic error detecting system is enabled by a WHEN ERROR THEN statement. This 
statement should be followed by a section of statements to handle the error condition, e.g. 
closing valves or stopping production. This section of program will only be executed if an er-
ror occurs in the succeeding part of the task. 
 
The WHEN ERROR THEN statement is task dependent, meaning that the automatic error 
detecting system is only enabled for the tasks that have executed a WHEN ERROR THEN 
statement. 
The figure below illustrates the structure for a task using WHEN ERROR: 

 
If an error occurs in the first part of the task (* ref.1 *), this would not affect normal program 
execution, but erroneous data could be loaded and may cause problems, e.g. in calculations. 
 

Task  name 
VAR 
 local variable 
 
Procedure  
 local procedure 
 
Begin  

statements for this task    (* ref.1 *) 
 
 WHEN ERROR THEN 
 Begin 
  statements for handling errors 
 End; 
 statements for this task     (* ref.2 *) 
End;  

Task Heading. 
 
Local variable declaration.  
 
 
Local procedure declaration. 
 
 
Task statements. 
 
Error handling part. 
 
 
 
Task statements. 
 



502 052 08 
 

Manual Process-Pascal 77/144 

The error handling part of the program is defined in the section after the WHEN ERROR 
THEN statement. If an error occurs in the last part of the task (* ref.2 *), this will interrupt pro-
gram execution in the statement which caused the error, and move the program execution to 
the error handling part after WHEN ERROR.  
 
The error handling part after WHEN ERROR THEN can end in three ways:  

1. the program continues with the statements after the error handling part,  
2. the program execution can RETURN to the statement where the error occurred 

and continue from there, i.e. proceed with the next P-code, 
3. the program execution can return to the statement where the error occurred and 

retry the P-code. 
 
To make the program execution return, the standard procedure RETURN must be called. 
 
WARNING: When using RETURN, the program execution continues with the P-code AFTER 
the one in which the error occurred, and there is therefore a risk of using erroneous data in 
the succeeding calculations. 
 
To make the program retry the P-code that caused the error, a standard procedure Retry-
IfLegal  must be called. 
 
WARNING: When using RetryIfLegal , the program execution retries the P-code in which 
the error occurred and there is a risk of an infinite loop, or a very slow system in the event of 
many errors. If using the RetryIfLegal  procedure, a counter should always be imple-
mented, and a maximum value for the counter chosen, to avoid the program locking up. The 
RetryIfLegal  procedure can only be executed if the "WHEN ERROR program" was in-
voked by a transmission error. 
 
To enable, disable, clear and test various error states, corresponding to a number of error 
bits, some standard procedures/functions are available in Process-Pascal: 
 

26.1 WHEN ERROR THEN [Disable] 
The WHEN ERROR THEN statement activates the automatic error detecting system, which 
is enabled for all error conditions, i.e. enables all error bits. When an error occurs, program 
execution is interrupted and moved to the WHEN ERROR part. The [Disable] parameter is 
optional, and makes it possible to disable changetasks (interrupts from other tasks), to protect 
the program execution in the WHEN ERROR section. If [Disable] of ChangeTask is used in 
the "WHEN ERROR program", call Enable(ChangeTask)  inside the WHEN ERROR block 
to enable ChangeTasks in the program. 
 
A bit specification can be used to specify the error bits to be cleared, disabled, enabled, 
raised or tested. 
 
The different errors to clear, disable, enable, raise and test are: 
PnetError,  HisError, ModuleError,    ActError,Data Error, 
BufferError,  ArithmicError,      IndexError,  Conv ertError 
The first three errors are caused by external events: 



502 052 08 
 
 

78/144 Process-Pascal Manual 

PnetError  corresponds to a transmission error on P-NET, 
HisError,ModuleError corresponds to a historical error or a module error in the ac-

cessed module, i.e. the ChError.His register is not 0, 
ActError,DataError corresponds to an actual error in the data or a data error in 

the accessed module, i.e. the ChError.Act register is not 0. 
 
 
The next four errors are caused by internal events: 

BufferError a buffer is accessed when it is full/empty, 
ArithmicError division by zero, over/underflow, 
IndexError array index out of bounds, 
ConvertError error in converting ASCII to numeric. 

 
 
These last four errors also generate an error code in the controller errorcode. 
 
 
BITTEST 
Bittest is a function used for testing error bits, generated by the automatic error detection sys-
tem or the P-NET operating system. The function returns a boolean. 
  BitTest (Error [,errorbit, .., errorbit]); 
 
Using Bittest on ERROR, enables a test to be performed on the error bits generated by the 
automatic error detection system. If the bit specification is omitted, Bittest is true if any of the 
error bits is true, otherwise the specified error bits are tested.  
 
NOTE: To ensure only current error bits are tested, error bits should be cleared after the 
WHEN ERROR part, since the operating system will not clear these. 
 
  BitTest (Transmission, TransmissionErrorBit); 
 
Using Bittest on TRANSMISSION, enables a test to be performed on the error bits generated 
by the P-NET operating system. Bittest is true if the corresponding error bit is true. The error 
bits correspond with the bits in the fieldvariable ErrorCode from the InterFaceErrorBuffer (see 
the following pages). 
 
CLEAR 
Clear is used to clear error bits, generated by the automatic error detection system. If the bit 
specification is omitted, all error bits are cleared, otherwise the specified error bits are 
cleared. 
  Clear(Error [, errorbit, .., errorbit]) 
 
DISABLE 
Disable is used to disable all errors or specific errors, generated by the automatic error detec-
tion system. Disabling error bits will prevent the WHEN ERROR part being executed when 
the corresponding errors occur. 
  Disable(Error [, errorbit, .., errorbit]) 



502 052 08 
 

Manual Process-Pascal 79/144 

 
ENABLE 
Enable is used to Enable all errors or specific errors, to be generated by the automatic error 
detection system. 
  Enable(Error [, errorbit, .., errorbit]) 
 
RAISE 
Raise is used to force an error state, ignoring the automatic error detection system. An error 
can be raised in a specific task denoted by TaskIdentifier, or the error can be raised within the 
task, by calling the Raise procedure. 
  Raise([TaskIdentifier, ] Error [, errorbit, .., e rrorbit]) 
 

26.2 ERROR REPORT 
When an error is detected by the operating system, it can assign a number of parameters, 
contained in a report, to the global variable called InterFaceErrorBuffer. This variable is de-
clared in the system file for the controller in question, as a buffer with 10 elements. Each ele-
ment is defined as a record of 4 fields, containing information on the variable that caused the 
interface error. Three different errors can cause the operating system to produce this report, 
denoted by the following identifiers:  
    PnetReport,    HisReport,    ActReport. 
 
These report bits can be disabled or enabled independently by means of Dis-
able(Error,reportbit) or Enable(Error,reportbit). The WHEN ERROR statement enables all 
three report bits and all error bits. 
 

PnetReport only communication errors on the P-NET will insert an ele-
ment in the InterFaceErrorBuffer, 

HisReport only historical errors within the accessed module will insert 
an element in the InterFaceErrorBuffer. ModuleReport can 
be used instead of HisReport 

ActReport only data errors within the accessed module will insert an 
element in the InterFaceErrorBuffer. DataReport can be 
used instead of ActReport. 

 
 
The declaration of the InterFaceErrorBuffer is shown below. 
TYPE 
  InterFaceErrorRecord =  RECORD  
    SWNo     : WORD;  
    VARAddr  : LONGINTEGER;  
    VAROffset: WORD;  
    ErrorCode: WORD;  
  END;  
 
VAR 
  InterFaceErrorBuffer : BUFFER[10] OF InterFaceErr orRecord; 
Since the variable InterFaceErrorBuffer is of type buffer, it is not possible to read a field in an 
element. A new variable of the same type as the elements in the buffer must be declared. 



502 052 08 
 
 

80/144 Process-Pascal Manual 

Having done so, the entire element can be assigned, and then each field in the new variable 
can be accessed.  
 
Also see the example in the procedure WhenErrorRoutine or the task Error_In_InterFace, 
about how to use InterFaceErrorBuffer. 
 
NOTE: When activating the automatic error detecting system and a report element is stored 
in the buffer, an appropriate section of program must be written to read this report element 
from the InterFaceErrorBuffer, in order to prevent the buffer from overflowing. 
 
The fieldvariable SWNo holds a SOFTWIRE number for the interfacemodule variable that 
caused the interfaceerror. The standard function VARNAME(SOFTWIRENo)  returns the 
stringconstant after NAME for the module variable, if it is declared. Also refer to the chapter 
VARIABLE DECLARATION to see how to assign a name string to a variable. 
 
The fieldvariable VARAddr holds a logical address in the interfacemodule for the variable. 
For simple interfacemodules (I/O modules), the contents of VARAddr is a number, which is a 
combination of the channel number and the register number of the variable. If the module is a 
controller, VARAddr holds the SOFTWIRE number of the variable from the controller that 
caused the interfaceerror. 
 
The fieldvariable VAROFFSET holds an offset to the variable (in the interfacemodule that 
caused the interfaceerror). The field variable VAROffset can be used to locate a variable in a 
complex variable. 
 
The fieldvariable ErrorCode  holds the errorcode relating to the interfaceerror. The field is de-
clared as a word. The meaning of each bit is described in the specific controller’s manual: 
 
A typical structure for the error handling section is shown in the example below: 
 
WHEN ERROR THEN [Disable] 
BEGIN (* The error detection is automatically disabled when the WHEN ERROR part is en-

tered. This prevents the error program entering a loop forever if new errors occur 
during the error handling procedure. *)  

 
 (* Start the error handling procedure by, for example, closing valves or stopping pro-

duction. The error handling procedure should bring the process back to a well de-
fined state, from which it can continue. A RETURN or RETRYIFLEGAL may be 
used to return to the program section from where the error was detected. Use En-
able(ChangeTask) before leaving the WHEN ERROR block to allow changetask *) 

 
END; (* End of the error handling procedure. The error detection is automatically enabled 

again, and will call this error handling section when the next error occurs. The pro-
gram will continue with the statement following this "END". *)  

 
Below is an example of the WHEN ERROR statement using RETURN: 
WHEN ERROR THEN [Disable]  (* disable Changetask *)  



502 052 08 
 

Manual Process-Pascal 81/144 

BEGIN 
  WhenErrorRoutine(GlobalErrorString); 
  Enable (ChangeTask); 
  Return; 
END; 
Disable(Error); 
Enable(Error, PnetError, HisError, PnetReport, HisR eport); 
 
The example above will call the common error handling routine that returns the error infor-
mation in a global error string. Please refer to the files “When_Error.inc” in the Process-
Pascal library for additional details.  
 
It is also possible to connect an interrupt to the InterFaceErrroBuffer and to call a common 
task, activated when an interfaceerror occurs, using a softwireinterrupt. The interrupt is 
connected to the variable INTERFACEERRORBUFFER, as described in previous pages. 
Please refer to the file “Intererr.inc” in the Process-Pascal library for additional details. The 
task generates a string, containing an error message. The ErrorText variable is assumed to 
be a global string. 
 
The examples in the Process-Pascal library provide a common procedure to find the error 
information. 
 

26.3 ERRORCODES 
Some of the above mentioned errors can set an error code in the controller. Please refer to 
the manual for the device in question, to see a complete list of errors and the related error 
codes. 



502 052 08 
 
 

82/144 Process-Pascal Manual 

27 The SoftWire List 
The SoftWire list is synonymous with a list containing information about the "wiring" of the 
plant. It has a table-like construction. The compiler converts each global identifier used in a 
Process-Pascal program into a number. These SoftWire numbers are used as an entry key to 
the SoftWire list, which contains structured information about each individual global variable 
and constant that is used in the particular program. 
 
The SoftWire list contains the following information: 
 
1. P-NET number and type of the unit - possibly internal - where the variable is stored. 
 
2. The data type of the variable, such as integer, real, array, record, etc. It is worth noting 

that a record can represent a complete channel in a P-NET module. 
 
3. The address of the variable. If the variable is available internally, the list will contain a 

physical address, whereas the list will contain a SoftWire number or logical address if 
the variable is external. 

 
4. Name of alarm. In cases where an error is detected in a variable, for instance, in an 

analogue measurement channel, the name of the alarm will be included in the automa-
tic error report (application program, written in Process-Pascal). 

 
The SoftWire list is generated by the Process-Pascal compiler, based on the global variables 
declared in the Process-Pascal program. The contents of the SoftWire List can be seen in the 
MAP file. 
 
During compilation, the compiler also generates a list of SoftWire numbers that are associ-
ated with all the external devices and channels that have been declared within the program. 
This list is stored in a global constant, declared in the PDxxxx.sys file, called PDBoxDefini-
tion. 
 
During starting up of a program or during configuration of a plant, it is possible to arrange to 
check that all the connected units are available and are equivalent to the types specified in 
the SoftWire list (as an optional program to include in the application program). See 
INITBOX4.INC or INITBOX5.INC, in the Process-Pascal library. 
 

27.1 The purpose of the SoftWire list. 
The SoftWire list enables the global variables that have been declared in individual control-
lers, to be available all over the network, thus enabling several controllers to co-operate. 
 
When data are required to be sent from one controller to another, the identifiers in each will 
not be known by the other. Consequently, such data and local identifiers must be related to 
some numbers in a list, the SoftWire List. 
The number of P-NET interface modules and the addresses of the variables can be changed 
within the SoftWire list without re-compiling the programs in the other controllers. 



502 052 08 
 

Manual Process-Pascal 83/144 

28 Screen Setup and Definition 
A screen can be defined to be of a certain size (ScreenInfo.Width * ScreenInfo.Height) in pix-
els. The diagram shows a section of the screen, referenced to the upper left corner by 
ScreenInfo.ScreenX and ScreenInfo.ScreenY. This section, called the basic window, is set by 

using the standard procedure SetWindow. 
 
The system files for the various controller types declare a variable called ScreenInfo, which is 
a record type that holds information about the picture and the screen, and has the following 
structure: 
  ScreenInformationType = RECORD  
             Video: BitMapPtr;       screen definit ion 
             Width: INTEGER;  
             Height: INTEGER; 
             CursorX: INTEGER;      cursor definiti on 
             CursorY: INTEGER; 
             CursorForeGround: BYTE; 
             CursorBackGround: BYTE; 
             Cursor:  BitMapPtr; 
             ScreenX: INTEGER;      basic window de finition 
             ScreenY: INTEGER; 
             ScreenWidth: INTEGER; 
             ScreenHeight: INTEGER; 
        END;  
 
Video holds a pointer the screen (the video RAM). It is not possible to access the display 
directly via this pointer. The pointer is set up by the standard procedure SetScreen. 
 
Width and Height defines the width and height of the screen, in pixels. The values are set up 
by using the standard procedure SetVideo(x,y). 
 

Width

Height

Cursor

ScreenWidth

Screen- 
Height

CursorX

CursorY

ScreenY

ScreenX

0
0



502 052 08 
 
 

84/144 Process-Pascal Manual 

CursorX, CursorY defines the actual position of the cursor. It is only used for reading the posi-
tion, and the cursor cannot be moved by writing to these values. The cursor position is 
changed by means of the standard procedures CursorToAbs(x,y), MoveCursor(x,y) or Cur-
sorTo(x,y). Refer to elsewhere in this manual for further details. 
 
CursorForeground, CursorBackground defines the foreground and background colours of the 
cursor. The colours can be accessed directly, or set by using the standard procedure SetCur-
sorColors. If the colours are accessed directly, the cursor will not change colour until it is 
moved. 
 
Cursor holds a pointer to the cursor bitmap. The value of this variable is for internal use only. 
The pointer is set up by means of the standard procedure SetCursor. 
 
ScreenX and ScreenY are used in controllers capable of having many windows. The stan-
dard procedure SetWindow(x,y) will insert x in ScreenX and y in ScreenY. Refer to else-
where in this manual for further details. 
 
ScreenWidth and ScreenHeight hold the physical width and height of the screen in pixels. 
 
To access the screen, a corresponding videoram is declared as a variable holding infor-
mation about the size and address for this videoram, as shown below: 
VAR 
  Picture : VIDEOBITMAP['picturesize'] AT ADDRESS: $'adr'; 
 
 where  'picturesize' is size for the actual screen in bytes. 
   'adr' is the address of the videoram for the actual screen. 
Example: 
    Screen : VIDEOBITMAP[$4000] AT ADDRESS: $4C0001 ; 
 
The standard procedure SETSCREEN selects a variable of the type VIDEOBITMAP for the 
actual screen and a pointer is generated to the field variable ScreenInfo.Video.  
 
A variable of type BitMapPtr is used by the operating system to locate the variable in mem-
ory. All variables of type BitMapPtr should not be accessed in the program by the user, be-
cause they are changed and used by the standard procedures with the name SET....., e.g. : 
SETVIDEO. 
 
The standard procedure SETVIDEO clears the screen to the background colour, and passes 
its parameters to ScreenInfo.Width and ScreenInfo.Height and sends these parameters to 
the videocontroller. Assigning values to ScreenInfo.Width and ScreenInfo.Height has no in-
fluence on the picture, unless SETVIDEO is called. 
 
The cursor position is defined by a pixel position relative to the screen origin, and is given by 
ScreenInfo.CursorX and ScreenInfo.CursorY. The screen origin is the pixel position (0,0) 
(upper left corner). 
 



502 052 08 
 

Manual Process-Pascal 85/144 

The standard procedure SETCURSOR selects a variable of the type bitmap for the actual 
cursor, and a pointer is generated to the variable ScreenInfo.Cursor. The pointer for Screen-
Info.Cursor must be generated at least once in the program, if a cursor is used within that 
program. The cursor is NOT used for writing onto the screen, it is only used to point to vari-
ables on the screen when the user wants to change their value from the keyboard. 
 
The standard procedure SETWINDOW selects a section of the screen to be shown, and 
which is the basic window. The window is defined by ScreenInfo.ScreenX and Screen-
Info.ScreenY to be the upper left corner of the screen, when ScreenInfo.ScreenWidth and 
ScreenInfo.ScreenHeight are to be set to match the actual number of display pixels available 
in the used hardware. 



502 052 08 
 
 

86/144 Process-Pascal Manual 

29 Writing on the Screen 
Writing on the screen can utilise different characters and symbols in various sizes, all inde-
pendent of each other, and on the same screen. This means that it is simple to combine text 
and graphics, because all text is written in graphic mode. All text and symbols can be placed 
on the screen in any pixel position, so text can be written with proportional spacing and with 
any line space format. 
 
Anything that is written onto the screen, is referenced to particular windows. Firstly, the basic 
window is selected (this window is automatically opened by the selection) and following this, 
a number of windows can be opened from that basic window (only used within the PD5020). 
The following description only concerns writing within the basic window. 

When it is required to write on the screen, two standard procedures are available: Display  
and Update. When these procedures are called, different parameters must be passed to 
them. Of these parameters, the first one holds information about the character generator, 
writing-mode and pen position. 
 
Writing onto the display always requires a pen. If no pen is mentioned in the statement for 
writing - e.g. Display(), then DefaultPen is used as default. If a local DefaultPen has been 
declared, it will be used, otherwise the globally declared DefaultPen will be used. The pen 
holds information about the character generator, colours, window number, pen position etc. 
 
Before the above mentioned procedures are called, a character generator, a foreground and 
a background colour and a pen position must be assigned to the variable of type Pen-
InformationType.  
 
 

Width

Height

Cursor

ScreenWidth

Screen- 
Height

CursorX

CursorY

ScreenY

ScreenX

0
0



502 052 08 
 

Manual Process-Pascal 87/144 

A Pen is declared as a record type having the following structure: 
  Record 
    CharGen    : CharacterGeneratorPtr; 
    ForeGround : Byte; 
    BackGround : Byte; 
    RefX       : Integer; 
    RefY       : Integer; 
    AbsX       : Integer; 
    AbsY       : Integer; 
    Status     : Array[0..7] of Boolean; 
    WindowNo   : Byte; 
    AltFore    : Byte; 
    AltBack    : Byte; 
  End 
 
It is possible to define as many variables of the type PenInformationType as needed. Typi-
cally, it is sensible to define one variable for each task that writes on the screen. This is nec-
essary to ensure that no other tasks change the character generator, colour or pen position, if 
they interrupt the task just after setting up the required parameters. 
 
CharGen contains a pointer to a character generator. A character generator is an array of 
bitmaps, where each bitmap represents a character. Typically, the ASCII value for the 
character is used as an index within the character generator. The CharGen pointer is set up 
by use of the standard procedure SETCHARACTERGENERATOR. The figure below 
shows an example of the character ”A” from a 6 x 8 character generator. 
 
The colours on the screen are selected with the field variables ForeGround and Back-
Ground  in variables of type PenInformationType. The colours for a pen can be set by means 
of the standard procedure SETCOLORS. ForeGround and BackGround can take the follo-
wing values: 
 
  16 different colours (Only used in a PD5020. The variety of colours are de-

fined in the PD5000 manual. Black and White are used 
in the other controllers) 

  1 transparent colour 
  inverse writing mode 
 
The difference between the foreground and the background writing is shown below for the 
character A.  
 
The foreground colour corresponds to the pixels defined to be ON in the bitmap specification 
(symbolised by 1 below), and the background colour corresponds to the pixels defined to be 
OFF (symbolised by 0 below).  
 
Also see the previous chapter - BITMAP. 



502 052 08 
 
 

88/144 Process-Pascal Manual 

 
0 1 1 1 0 0 

1 0 0 0 1 0 

1 0 0 0 1 0 

1 0 0 0 1 0 

1 1 1 1 1 0 

1 0 0 0 1 0 

1 0 0 0 1 0 

0 0 0 0 0 0 

 
 
If the foreground colour is set to transparent, only the background colour is written. 
 
If the background colour is set to transparent, only the foreground colour is written. 
 
If both the foreground colour and the background colour are set to transparent, nothing is 
written at all. 
 
 
The 16 different colours are represented by 4 bits. When using the inverse writing mode, 
each of the 4 bits is inverted to give the resulting colour. (Only used in PD5020. Black and 
white can be inverted in the other controllers). 
 
Writing to the screen is performed with reference to a pixel position. This absolute pixel posi-
tion is defined by the field variables AbsX  and AbsY  within record variables of type PenIn-
formationType. This pixel position is not the same as the cursor position, and should not be 
confused with that. 
 
The pen position X and Y can be assigned directly, or by the standard procedures Pen-
ToAbs , PenTo , MovePen  and PenRefTo,  followed by the variable concerned. The variable 
must be of the type PenInformationType. If the variable is omitted, the variable called De-
faultPen will be used. 
 
The standard procedures for changing the pen position and the corresponding results are 
listed below: 
 
MyPen is used as the pen variable. 
 
STANDARD PROCEDURE RESULT 
PenToAbs (MyPen,a,b) MyPen.AbsX = a 
 MyPen.AbsY = b 
PenTo (MyPen,a,b) MyPen.AbsX = MyPen.RefX + a 
 MyPen.AbsY = MyPen.RefY + b 



502 052 08 
 

Manual Process-Pascal 89/144 

MovePen (MyPen,a,b) MyPen.AbsX = MyPen.AbsX + a 
 MyPen.AbsY = MyPen.AbsY + b 
PenRefTo (MyPen,a,b) MyPen.RefX = a 
 MyPen.RefY = b 
 MyPen.AbsX = a 
 MyPen.AbsY = b 
 
When writing on the screen, the AbsX for the pen is changed according to the current pen 
position. 
 
Example: 
VAR 
  SmallChar : PenInformationType; 
BEGIN 
  SetCharactergenerator(SmallChar, SmallCharGenerat or); 
  (* select SmallCharactergenerator to be the chara cter 
     generator when writing on the screen with the 
     screeninformation variable called SmallChar *)  
 
  SmallChar.ForeGround:= Black;  (* set foreground colour black *) 
  SmallChar.BackGround:= White;  (* set foreground colour white *) 
 
  PenToAbs(SmallChar,0,40); 
  (* assign the pen position to AbsX=0 and AbsY=40 in the  
     variable SmallChar *) 
 
  Display(SmallChar,'This text is written with smal l characters'); 
  (* the text is written with characters from the c haracter  
     generator SmallCharGenerator. The first charac ter  
     is positioned with the reference point in abso lute  
     pixel position 0,40 *) 
 
  PenRefTo(1,1); 
  (* assign the reference point to (1,1) and the ab solute  
     pen pos. to (1,1) for DefaultPen *) 
 
  PenTo(MyPen,36,8); 
  (* move the pen position in MyPen to position (36 ,8) relative 
    to the reference point (MyPenRefX, MyPen.RefY) *) 
 
  MovePen(0,8); 
  (* move the pen position in DefaultPen relative t o the  
     absolute pen pos. for DefaultPen *) 
 
The cursor is NOT used for writing on the screen. It is only used to highlight variables on the 
screen when it is required to change their value from the keyboard. In other words, the cursor 
is used for entering and changing data via the keyboard. 
 
The symbol for the cursor is a bitmap, and the bitmap is selected by the standard procedure 
SetCursor . In addition, this procedure will display the cursor on the screen. Typically, a cur-
sor is only selected once within a program. 
 



502 052 08 
 
 

90/144 Process-Pascal Manual 

The size of the bitmap representing the cursor must not exceed the allocated memory space 
for the variable CursorHide. CursorHide is declared in the system file. The size of CursorHide 
must be at least the same size as the bitmap for the cursor.  
 
If a colour graphic screen is used, CursorHide must be at least 4 times the size of the bit-
map for the cursor. If the size of CursorHide is insufficient, an errorcode will be generated. 
 
Before the cursor is selected, the colours for the cursor bitmap must be set. The colours are 
set within the record variable ScreenInfo  by the field variables CursorForeGround and Cur-
sorBackGround. The specific colours depend on the selected cursor and the used display 
type. Furthermore, the initial cursor position on the display must be selected. The field vari-
ables CursorX and CursorY must be set to the absolute pixel position for the cursor. 
 
Three different standard procedures can be used to set or move the cursor to a specific posi-
tion: CursorToAbs , MoveCursor  and CursorTo . 
 
The standard procedures for changing the cursor position are listed below, together with the 
corresponding results: 
 
MyPen is used as the pen variable. 
 
STANDARD PROCEDURE RESULT 
CursorToAbs(a,b) ScreenInfo.CursorX = a 
 ScreenInfo.CursorY = b 
  
MoveCursor(a,b) ScreenInfo.CursorX = ScreenInfo.CursorX + a 
 ScreenInfo.CursorY = ScreenInfo.CursorY + b 
  
CursorTo(MyPen,a,b) ScreenInfo.CursorX = MyPen.RefX + a 
 ScreenInfo.CursorY = MyPen.RefY + b 



502 052 08 
 

Manual Process-Pascal 91/144 

30 Keyboard 
The keyboards used for the different Controllers are designed as a number of user-defined 
keys. The key functions depend upon the type of application, and may be defined by the 
Process-Pascal program. 
 
Each key has its own keycode, starting with code 1, up to number of keys on that keyboard. 
 
The KeyBoardBuffer variable is a buffer of byte, where the operating system stores a key 
code when a key is pressed. It is also possible to achieve remote control, by storing ”key 
codes” in the KeyboardBuffer via P-NET. (An example of this can be found in VIGO for the 
PD 4000 Controller, by selecting the program called ‘Show PD4000 Controller’ from the 
right mouse menu). 
 
The standard keyboard task is declared as a SoftWire interrupt task, connected to Key-
boardBuffer, with interrupt condition ”InternStore" and ”ExternStore". The task will run each 
time a key is pressed, or a ”key code” can be stored in the KeyboardBuffer via P-NET.  
 
If one key is pressed, the number of that key is stored in KeyboardBuffer by the operating 
system. If the key is held down for more than 0.5 seconds, the operating system starts to 
send REPEAT codes with a frequency of 8 Hz. A repeat code consists of the key number + 
128 ($80). If, when one key is held down, another key is also pressed, the code for the 
second key + 64 ($40) is stored in KeyboardBuffer.  
 
Example: 
Key number 4 is pressed. The code 4 is stored in KeyboardBuffer. Now the key is held 
down. After 0.5 seconds, the code 132 ($84) is stored in KeyboardBuffer every 1/8 second. 
Now, with key number 4 still held down, key number 7 is pressed. The code 71 ($47) is 
sent to the KeyBoardbuffer. If both keys are held down for 0.5 seconds, the code 199 ($C7) 
is stored every 1/8 second. No release code is stored, when the keys are released. 
 
Please refer to the specific Controller manuals for details about the number of keys available 
and their associated positional key codes. 
 



502 052 08 
 
 

92/144 Process-Pascal Manual 

31 Real-time Clock and Calendar 
A CONTROLLER incorporates a real-time clock and calendar. The real-time clock and cal-
endar is accessed through a system variable called DateTime, which is defined as SOFT-
WIRE 6. (In a PD 5000, the real-time clock is found in Service.DataTime). 
 
For a PD 4000, DateTime is defined as an array of bytes in the system file. 
For a PD 5000, DateTime is defined as a Record with eight fields, each defined as a byte in 
the system file. 
Each byte or field in DateTime is defined below: 
 

PD 5000 PD 4000 Description 
Second DateTime[0] This byte holds the Seconds. The decimal range for se-

conds is from 0 to 59. 
Minute DateTime[1] This byte holds the Minutes. The decimal range for 

minutes is from 0 to 59. 
Hour DateTime[2] This byte holds the Hours. The decimal range for hours 

is from 0 to 23 in 24 hour mode, or from 1 to 12 in 12 
hour mode. 

Day DateTime[3] This byte holds the Day of the Week. The range for day 
of the week is from 1 to 7, where Sunday = 1. 

Date DateTime[4] This byte holds the Date. The range for date is from 1 to 
28/29/30/31, depending on the month. The real-time 
clock provides automatic leap year recognition. 

Month DateTime[5] This byte holds the Month. The range for month is from 
1 to 12, where Jan = 1 and Dec = 12. 

Year DateTime[6] This byte holds the Year. The range for years is from 0 
to 99. 

Code DateTime[7] The following values are used to select hour mode: 
DateTime[7]:=$00;  (* 24 hour mode *) 
DateTime[7]:=$80;  (* 12 hour mode, AM *) 
DateTime[7]:=$A0;  (* 12 hour mode, PM *) 

 
 
The 12/24 hour mode, indicated by Code, is not supported in the PD 5000. 
 
In 12 hour mode, DateTime[7] can be read to indicate if the time is AM or PM. It is recom-
mended that DateTime[7] is set to one of the example values in the program, to ensure ap-
propriate operation for the real-time clock and calendar. 
 
The operating system in the Controller synchronises the DateTime with the real-time clock 
chip each time the Seconds change to 0. This can cause a problem when the time is set to 
'just before midnight', 23:59:SS, where the time does not reset to 00:00:00, but changes to 
the previous time setting. When the time is set to 23:58:SS, it will reset to 00:00:00 correctly.  
 



502 052 08 
 

Manual Process-Pascal 93/144 

32 Accessing Undeclared Variables 
In larger systems with many controllers involved, there may be a need to access variables via 
P-NET, which have not been declared within the controller. The variables might reside in an-
other controller or in a newly installed interface module connected to another part of the plant, 
and therefore they may be unknown to a number of controllers. 
 
In general, it's not possible to access such variables, e.g. to display a measured value, with-
out having declared the variable first. However, the system variable called NodeList provides 
a way to access undeclared variables. Reference should be made to the .SYS file for the 
controller in question, to find the SoftWire number for NodeList. 
 
Before access to an undeclared variable can be achieved, there are some basic elements, 
which must be known. The elements needed to access such a variable are: 

• P-NET node address 
• SoftWire number or absolute address 
• Offset 
• Bit number 

and of course, the type of the variable. 
 
In addition to the above, a variable cannot be accessed properly, unless the type of the mod-
ule which holds the variable is also known. According to the P-NET standard, it must be 
specified whether the module understands extended or complex P-NET addressing, address-
ing with offset, and so on. Please refer to the chapter INTERFACE for further information. 
 
All the above information for a variable can be gathered in a pointer, by means of a 
NODELIST and a pointer function. The system variable NodeList is declared as an array of 
NodeListElement, as shown in the following: 
  NodeList: ARRAY[1..10] of NodeListElement; 
 
where each element is a record type having the following structure: 
  NodeListElement = RECORD 
  Code       : BYTE; 
  StdChannel : BOOLEAN; 
  DeviceType : INTEGER; 
  NodeAddr   : STRING[10]; 
  END; 
 
The user can change the number of elements within NodeList. The size is declared to be 10 
elements as default. The size of NodeList can be changed to match the actual application. 
 
StdChannel must be set to TRUE, if the device incorporates channels that follow the structure 
for general purpose channel types, as defined within the P-NET Standard. 
 
DeviceType is an integer type denoting the device type of the module that it is required to ac-
cess. 
 



502 052 08 
 
 

94/144 Process-Pascal Manual 

NodeAddr denotes the P-NET node address of the module. NodeAddr is declared as a 
string, where NodeAddr[0] holds the number of bytes that are needed to specify the entire 
node address, including port numbers and node numbers.  
 
The total length of the string denoting the node address, must not exceed 25 characters. 
The port numbers and node numbers in the node address are NOT ASCII characters but 
hexadecimal numbers in the range 0..$7F, corresponding exactly to port numbers and node 
addresses. 
 
The Code field indicates the capabilities for the node to access, and is defined in the fol-
lowing way: 
 

7 6 5 4 3 2 1 0   

         0: Offset legal, 1: Offset illegal 
         0: Bit addressing legal, 1: Bit addressing illegal 
         0: IEEE Real format, 1: OldReal 
         0: 2 byte addressing,  1: 4 byte addressing 
         0: Softwire addressing, 1: Physical addressing 
         0: Simple NodeAddr,  1: Extended/Complex nodeaddr 
           
         0: Use offset in Long,  1: No offset in Long 

 
Please refer to the P-NET standard for further details about addressing facilities. 
 
Reference could also be made to the VIGO Users Manual (Ref. No. 502 086), in the Capabili-
ties table, to find a list of values to use for Code, for various device types. (Code is the same 
as Capabilities in VIGO). 
 
When an element in the nodelist, Code, DeviceType and NodeAddr has been defined, ac-
cess to the module specified within the list can be achieved. Access to the module is made 
by means of a pointer, which is set to point to the variable required to be accessed, (see 
the chapter - POINTER TYPES, about how to declare and use a pointer). 
 
The pointer being used is set to point to the variable by means of the function 
POINTERTONODE, which is a standard function in Process-Pascal. PointerToNode op-
erates on an element from the NodeList, a Softwire number, an offset and a bit number 
and it returns a pointer.  
 
The syntax for PointerToNode is the following: 
MyPtr -> PointerToNode(NodeListIndex, SWNo [, Offse t [, BitNo]]); 
 
NodeListIndex is an index to an element in NodeList and SWNo specifies the actual Softwire 
number from where access is wanted. If the variable is of a complex type, the Offset can be 
used to select a simple type variable. If the variable is a boolean array, the BitNo can be used 
to select the bit number. Offset and BitNo are optional, and if omitted, they are set to zero in 
the function call. 
 



502 052 08 
 

Manual Process-Pascal 95/144 

If Node = 0, i.e. the index is outside the NodeList array, then the pointer is set to an internal 
variable at the specified Softwire number. PointerToNode will also create a pointer to an in-
ternal variable if the NodeAddr field in the selected nodelist element is not specified (an 
empty string).  
 
The PointerToNode function is used both in the Service and Config programs, and in the 
example program for WHEN ERROR. These files can be found in the Process-Pascal li-
brary. 
 
Example of how PointerToNode could be used: 
 
  VAR 
    RealPtr : POINTER TO REAL; 
    NodeNo, NodeSWNo, NodeOffset : INTEGER; 
 
  PROCEDURE ShowVariable; 
  BEGIN 
    PenTo(0,0); 
    Display('Select node number '); 
    Update(NodeNo:2:0); 
    PenTo(0,8); 
    Display('Select SoftWire no '); 
    Update(NodeSWNo:4:-3); 
    PenTo(0,16); 
    Display('Select offset      '); 
    Update(NodeOffset:4:0); 
    RealPtr -> PointerToNode(NodeNo, NodeSWNo, Node Offset); 
    PenTo(0,24); 
    Display('Value for variable '); 
    Display(RealPtr:6:2); 
  END; 



502 052 08 
 
 

96/144 Process-Pascal Manual 

33 PD GATEWAY 
PD Gateway is an advanced option in Process-Pascal, which enables communication pro-
tocols used for control and regulation equipment (PLC's etc.) from different manufacturers, 
to be integrated directly into a Process-Pascal program. 
 
By using the PD Gateway option, a "non P-NET compatible device" can be regarded as a 
P-NET interface unit, and can be accessed by the entire P-NET system, as a "normal 
P-NET device", including error detection and error handling. On the other hand, the P-NET 
system can also be regarded as a part of the "non P-NET system" as just another unit, 
when it is accessed from the "non P-NET" side. 
 
The "non P-NET system" is connected to P-NET via a PD 5000 P-NET Controller, using ei-
ther an RS-232 or RS-485 communication port. The PD 5000 P-NET Controller is con-
nected to the "non P-NET system" via one of the physical ports, Port1 to Port3. 
 
The principle is, that instead of accessing the device directly following the P-NET standard, 
a Process-Pascal task is started from the operating system. This program uses a virtual 
port - the Gateway port, and a physical port to which the device is connected. The task 
converts to and from the appropriate protocol for the actual device. When an answer from 
the device is received, the Process-Pascal program returns it to the operating system, in 
exactly the same manner as if the answer was received from a normal P-NET transmission. 
The Process-Pascal task must be declared as a SoftwireInterruptTask. 
 
The variables that are to be accessed from the "non P-NET device", are declared in the 
P-NET master units where the access is required by the application, exactly as a normal 
variable declaration. The variables are declared as global variables with a NET address, in-
cluding a net list and, depending on the communication protocol, an address specification. 
The net list for these variables must involve Port5 in the Gateway Controller to activate the 
Process-Pascal communication program. 
 
A GatewayRecord is declared in the system file for a PD 5000, which is used to transfer 
data from the operating system to the Process-Pascal programme that is interfacing with 
the "NON P-NET DEVICE" (CALL). After the Process-Pascal program has performed the 
"NON P-NET" transmission, the same RECORD is used to transfer data from the Process-
Pascal program to the operating system (ANSWER). 
 
A GatewayRecord is declared in the following way: 
  Record 
    NodeAddress  : String[25] 
    Control_Status  : Byte; 
    InfoLength  : Byte; 
    Info  : Array[1..63] of Byte; 
    Flags  : Array[0..7] of Boolean; 
  end; 
 



502 052 08 
 

Manual Process-Pascal 97/144 

The fields NodeAddress, Control_Status, InfoLength and Info, correspond to the same 
fields that are described in the P-NET standard. The operating system handles all NodeAd-
dress conversion.  
 
The task of the Process-Pascal program is to return Control/Status, InfoLength and Info ac-
cording to the results of the NON P-NET transmission (or time consuming calculation). Af-
ter this, the program must set the GatewayDone bit in the Flags field to True, (Flags[7]:= 
True) to activate the operating system, which then returns the answer to the P-NET master. 
 
NodeAddress  
This field is only used to transfer data from the operating system to the Process-Pascal pro-
gram (CALL). The length of the string indicates how many numbers the string contains. If, for 
example, a variable is declared - AT NET:(01, 04, 02, 33) the length of the string will be 3, 
and the contents will be 04, 02, 33 (The first 01 indicates Port1, and is not transferred in the 
CALL). 
 
Control_Status  
This field is used to transfer data in CALL as well as in ANSWER. First, it is used to transfer 
the instruction (as it is defined in the P-NET standard) in the CALL. In the ANSWER, it is 
used to transfer instruction/status to the operating system - again according to the P-NET 
standard, thus enabling the Process-Pascal program to return "Data Error" etc. to the operat-
ing system. 
 
InfoLength  
This field is also used in both directions. It is used to determine how many databytes are in-
volved in the transmission. For example, if the transmission is a "LOAD 8 BYTE", datalength 
will be 8 in CALL as well as ANSWER. If the transmission is a "STORE 4 BYTE", datalength 
will be 4 in CALL, and 0 in ANSWER. So, the datalength is used to tell the Process-Pascal 
program how many databytes are to be loaded/stored etc., and it is used to tell the operating 
system the number of databytes in the answer. The datalength must not exceed 56. 
 
Info  holds the entire info field, which consist of the internal address (Softwire no.), offset, bit 
number, data and error code as described below: 
 
 Addr  
 Addr is only used in CALL. Addr contains the internal address, as it is known from the 

P-NET standard. According to the P-NET standard, the address can be 2 or 4 bytes 
long, and it can be a Softwire number or a physical address. However, the address in 
Addr will always be sign extended to 4 bytes. If the address in the P-NET block was 4 
bytes, FLAGS[0] will be TRUE. 

 
 Offset  
 Offset is only used in CALL, according to the P-NET standard. If there was no offset in 

the P-NET block, the value 0 will be transferred in Offset. If there was an offset in the 
P-NET block, FLAGS[1] will be TRUE. 

 
 BitNo  



502 052 08 
 
 

98/144 Process-Pascal Manual 

 BitNo is only used in CALL. If the transmission is a bit-transmission (indicated in the P-
NET block by the MSB in a 4 byte address being SET), BitNo will contain the bit num-
ber, 0..7, and FLAGS[2] will be TRUE. 

 
 DATA 
 The Data field is used in CALL as well as ANSWER, and contains data as defined in 

the P-NET standard. 
 
 ErrorCode  
 This field is only used in ANSWER. If the "NON P-NET" transmission results in an 

error of some kind, the Process-Pascal program can return an error code in this 
field. Refer to the chapter "WHEN ERROR", for information on which error codes 
should be used. The operating system inserts 0 in this field in the CALL. If the Er-
rorCode is not 0 in the ANSWER, the operating system assumes there was a com-
munication error, and does NOT use any data. Instead, the information "P-NET Er-
ror" is returned to the master. 

 
 
The Flags variable has the following meaning: 
 

7 6 5 4 3 2 1 0   

          
         Gateway access 
          
          
          
         InUse 
         GatewayDone 

 
Before an interrupt is made to invoke the Process-Pascal program, InUse is set TRUE by 
the operating system. This is to prevent others from using the Gateway channel until this 
operation is Done. 
 
When the Process-Pascal program has returned the response to GatewayRecord , it must 
set GatewayDone to True. The Process-Pascal program should NEVER write to InUse. 
The operating system routines that are activated by the GatewayDone bit will clear InUse, 
when the operation has been completed. 
 
Example:  
 

PC or Printer 

PD5000 
P-NET  

controller 

PD5000 
GateWay 
Controller 

PLC 
system RS232 

Port 3 Port 2 Port 2 Port1 

No5 
RS485 

 
 



502 052 08 
 

Manual Process-Pascal 99/144 

 
 The PLC system consists of 2 PLC's, with node numbers 1 and 2. 

 
 The set up for the Gateway controller should be as follows: 
  Port_1.ActualMode.Protocol to be set to DatamodeInOut,  
  Gateway.GatewayInterrupt to be set to 5, 
  Port_1.ActualMode.BaudRate must be selected to match the PLC. 
 In the Gateway controller, the PLC-data are declared in this way: 

PLC1Data: ARRAY[1..100] of INTEGER[DeviceType:5000]  
                                   AT NET:(5,1) SOF TWIRE:$1234; 
PLC2Data: ARRAY[1..100] of INTEGER[DeviceType:5000]  
                                   AT NET:(5,2) SOF TWIRE:$1234; 

 
 In the P-NET controller, the PLC-data can be declared in 2 different ways. This way: 

PLC1Data: ARRAY[1..100] of INTEGER[DeviceType:5000]  
                                AT NET:(2,5,5,1) SO FTWIRE:$1234; 
  PLC2Data: ARRAY[1..100] of INTEGER[DeviceType:500 0] 
                                AT NET:(2,5,5,2) SO FTWIRE:$1234; 
 

 Or this way: 
PLC1Data: ARRAY[1..100] of INTEGER[DeviceType:5000]  
                                      AT NET:(2,5) SOFTWIRE:aaaa; 
PLC2Data: ARRAY[1..100] of INTEGER[DeviceType:5000]  
                                      AT NET:(2,5) SOFTWIRE:bbbb; 
 

 where aaaa and bbbb are the SoftWire numbers for PLC1Data and PLC2Data declared in 
the Gateway controller (from the Gateway controller MAP-file).  

 
 When a LOAD transmission of PLC1Data with index $31 is initiated from the P-NET control-

ler, the Gateway controller returns "answer comes later" to the P-NET controller. Then the fol-
lowing data are transferred to the Info field in the GatewayRecord in the Gateway controller: 
  NodeAddress = $01 
  Instruction = $02                 (LOAD) 
  DataLength  = $02                 (INTEGER size) 
  Addr        = $00001234            
  Offset      = $0062               (index $31 * 2)  
  BitNo       NOT DEFINED 
  Data        NOT DEFINED 
  ErrorCode   = $0000 
  FLAGS       = 0/1/0/0/0/0/1/0 
 

 After inserting these data, the task with interrupt number 5 is started. This task must perform 
a transmission to the PLC, and insert the result into the Info field within the GatewayRecord: 
  NodeAddress  Don't care 
  Instruction = $82                (module error in  the PLC) 
  DataLength  = $02 
  Address     Don't care 
  Offset      Don't care 
  BitNo       Don't care 
  Data        = 2233             (the data from PLC  integer $31) 
  ErrorCode   = $0000         (no transmission erro rs occurred) 



502 052 08 
 
 

100/144 Process-Pascal Manual 

  FLAGS       = 0/1/0/0/0/0/1/0 
 

 After inserting these data, the Process-Pascal program in the Gateway controller must 
insert TRUE in FLAGS[7]. This makes the operating system return the answer to the 
P-NET controller, with the data from the PLC. 

  
 Thus, the variables PLC1Data and PLC2Data can be accessed from the P-NET controller or 

from the Gateway controller, just as if they were variables inside a normal P-NET device. 



502 052 08 
 

Manual Process-Pascal 101/144 

34 Process-Pascal Reference Lookup 
The following list describes all the procedures and functions in Process-Pascal that are ex-
tensions to ISO 7185 STANDARD PASCAL. 
 
[ ] denotes that the enclosed parameter is optional. If not used, the compiler inserts a de-
fault value. 
 

34.1 Task handling 

34.1.1  CHANGETASK  
  ChangeTask; 
 
ChangeTask is a procedure without parameters, and it is used to switch program execution 
to deal with another task. ChangeTask can be used within all types of task.  
 
Example: 
  LOOP   (* LOOP forever   *) 
    ..  (*                *) 
    .. 
    ChangeTask;   (* Change to another task  *) 
  END; 
 

34.1.2 CONTINUETASK 
  ContinueTask(TaskIdentifier); 
 
A SUSPENDED task can be changed to READY status, if another RUNNING task calls the 
standard procedure CONTINUETASK together with the appropriate task identifier, 
(TaskIdentifier). This will insert the task back into the appropriate task chain and when in-
stigated, will continue from where it was last stopped or interrupted. 

34.1.3 CYCLICTASK 
  CyclicTask; 
 
A TIMEDINTERRUPT task and a SOFTWIREINTERRUPT task can be changed to a 
CYCLIC task by means of the standard procedure CYCLICTASK. Changing the task type 
will insert the task in the cyclic sequence, and the program execution for the task will con-
tinue until it meets a ChangeTask statement. 
 
Example: 
  Task FlowControl TimedInterrupt:1.0; 
  (* the task is declared as a timed interrupt task  *) 
  BEGIN 
    . . .  
    CyclicTask; 
  (* change the task type to a cyclic task *) 
    . . .  
  END; 
 



502 052 08 
 
 

102/144 Process-Pascal Manual 

34.1.4 DISABLE 
  Disable(TimedInterrupt); 
or 
  Disable(SoftwireInterrupt); 
or 
  Disable(Interrupt); 
or 
  Disable(ChangeTask); 
or 
  Disable(AutoChangeTask); 
Disable(TimedInterrupt) 
Disable(TimedInterrupt) is used in a cyclic task to prevent a timed interrupt task from inter-
rupting. All timed interrupt tasks are disabled by this procedure. Disabling the timed inter-
rupt tasks will not change the status of these tasks. This means that they are not removed 
from the task chain, and when the timed interrupt tasks are enabled again, they will try to 
catch up with any lost time. 
 
If a timed interrupt is disabled in a procedure or in a function, the interrupt status is auto-
matically set back to the state it was before the call occurred, following the completion of 
the procedure or function. 
 
Disable(SoftwireInterrupt) 
Disable(SoftwireInterrupt) is used in cyclic task, to prevent a SoftWire interrupt task from in-
terrupting it. All SoftWire interrupt tasks are disabled by this procedure. Disabling the Soft-
Wire interrupt tasks will not change the status of these tasks. 
 
If a SoftWire interrupt is disabled in a procedure or in a function, the interrupt status is 
automatically set back to the state it was before the call occurred, following completion of 
the procedure or function. 
 
Disable(Interrupt) 
Disable(ChangeTask) 
A Disable(Interrupt) or a Disable(ChangeTask) will disable both TimedInterrupt and Soft-
wireInterrupt tasks (see description above). 
 
Disable (AutoChangeTask ) 
Use Disable(AutoChangeTask)  to prevent ChangeTask while a transmission takes 
place. AutoChangeTask is disabled by default. This command only affects the task in which 
it is stated. 
 

34.1.5 ENABLE 
  Enable(TimedInterrupt); 
or 
  Enable(SoftwireInterrupt); 
or 
  Enable(Interrupt); 
or 



502 052 08 
 

Manual Process-Pascal 103/144 

  Enable(ChangeTask); 
or 
  Enable(AutoChangeTask);  
Enable(TimedInterrupt)  
Enable(TimedInterrupt) is a standard procedure used in a cyclic task, to enable a timed inter-
rupt task to interrupt. All timed interrupt tasks are enabled by this procedure. Timed interrupt 
tasks that ought to have run, will execute after enabling, and try to catch up with any lost time. 
Timed interrupt tasks are, by default, enabled in cyclic tasks.  
 
If a timed interrupt is enabled within a procedure or a function, the interrupt status is auto-
matically set back to the state it was before the call occurred, following completion of the pro-
cedure or function. 
 
Enable(SoftwireInterrupt)  
Enable(SoftwireInterrupt) is a standard procedure used in a cyclic task, to enable a SoftWire 
interrupt task to interrupt it. All SoftWire interrupt tasks are enabled by this procedure. Soft-
wire interrupt tasks that ought to have run, will now continue to execute in priority order. Soft-
wire interrupt tasks are, by default, enabled in cyclic tasks. 
 
If a SoftWire interrupt is enabled within a procedure or function, the interrupt status is auto-
matically set back to the state it was before the call occurred, following the completion of the 
procedure or function. 
 
Enable(Interrupt) 
Enable(ChangeTask)  
Enable(Interrupt) and Enable(ChangeTask) will enable both Timed and SoftwireInterrupt 
tasks. (See description above). 
 
Enable(AutoChangeTask) 
Use Enable(AutoChangeTask)  to enable ChangeTask while a transmission takes place. 
This might increase performance as other tasks can be working while the task performing 
P-NET communication is waiting for the response. AutoChangeTask is disabled by default. 
This command only affects the task in which it is stated. 
 

34.1.6 INTERRUPTTASK 
  InterruptTask; 
 
A CYCLIC task and a TIMEDINTERRUPT task can be changed to be a 
SOFTWIREINTERRUPT task, by means of the standard procedure INTERRUPTTASK, as 
long as it was originally declared as a softwireinterrupt task. The interrupt connection is set to 
the initial softwireinterrupt number (declared in the task head). The task continues from the 
next statement. 
 
Example: 
Task CalculateTotals SoftwireInterrupt:12; 
(* the task is declared as a SoftWire interrupt tas k *) 
BEGIN 



502 052 08 
 
 

104/144 Process-Pascal Manual 

  … 
  CyclicTask; (*change task type and perform the ca lculations *) 
  (* calculate totals *) 
 
  InterruptTask;  
  (*change the task back to a SoftWire interrupt ta sk *) 
  … 
END; 
 

34.1.7  MAXRUNTIME 
  MaxRunTime(time); 
 
The MAXRUNTIME for a task is initially given by a Real constant, and is declared in seconds 
with a resolution of 1/128 second. The default MAXRUNTIME is 300 seconds. 
 
The Max Runtime can be changed during program execution with the standard procedure 
MAXRUNTIME(time), where time must be a constant or a variable, denoting the new max 
runtime in seconds. 
 
Examples: 
  MaxRunTime(NewRunTime); 
 
  MaxRunTime(0.3); 
 

34.1.8  MYTASKNO 
  MyTaskNo:INTEGER 
 
This function returns the task number of the task calling the function. The function is an inte-
ger type. 
 
Example: 
  Display(MyTaskNo:3:0); 
 

34.1.9  RESTARTTASK 
  RestartTask; 
 
A RUNNING task can force itself to RESTART from the beginning of the task. To perform a 
restart of the task, the standard procedure RESTARTTASK is called. After calling 
RESTARTTASK, program execution will continue with the first statement within the task. 

34.1.10 STOPTASK 
  StopTask (TaskIdentifier); 
A READY task can be changed to SUSPENDED status, if another RUNNING task calls the 
standard procedure STOPTASK with the appropriate task identifier, StopTask(TaskIdentifier). 
This will prevent the task "TaskIdentifier" from running any further, until it is changed to 
READY again from another task, by means of a CONTINUETASK(TaskIdentifier) statement. 
When a task is SUSPENDED, i.e. stopped or has come to an END for the task, it is removed 



502 052 08 
 

Manual Process-Pascal 105/144 

from the task chain. This means that a timed interrupt task will not attempt to catch up with 
any lost interrupts when starting again after it had been stopped. 
 

34.1.11 TIMEDINTERRUPTTIME 
  TimedInterruptTime (time); 
 
The time interval for running a TimedInterrupt task can be changed during program execution 
by means of the standard procedure TIMEDINTERRUPTTIME(time), where time can be a 
constant or a variable, denoting the interval time in seconds. The time is specific to the task 
that calls the procedure, so the procedure must be called from the timed interrupt task that is 
required to have its time changed. If the procedure is called from a cyclic task or a SoftWire 
interrupt task, it has no effect. 



502 052 08 
 
 

106/144 Process-Pascal Manual 

 

34.1.12  TIMEDTASK 

A CYCLIC task or a SOFTWIREINTERRUPT task can be changed to a TIMEDINTERRUPT 
task by means of the standard procedure TIMEDTASK. Before changing the task type to 
TimedInterrupt, the interval time must be selected using TimedInterruptTime(time), or a de-
fault value of 255 seconds will be used. Changing the task type will not generate a Change-
Task, and the task will continue with the next statement. 
 
Example: 
  TimedTask; 
 

34.2 Error handling 

34.2.1  BITTEST 
  BitTest (Error [,errorbit, .., errorbit]):BOOLEAN  
or 
  BitTest(Transmission, TransmissionErrorBit):BOOLE AN 
 
Bittest is a function used for testing error bits, generated by the automatic error detection sys-
tem in the P-NET operating system. (Also see WHEN ERROR, CLEAR(ERROR), 
DISABLE(ERROR), ENABLE(ERROR) and RAISE(ERROR)). The function returns a boo-
lean. 
 
BitTest (Error [,errorbit, .., errorbit]) 
Using Bittest on ERROR allows a test to be made on the error bits generated by the auto-
matic error detection system. If the bit specification is omitted, Bittest is true if any of the er-
rors are true, otherwise only the specified errors are tested. 
 
The error bits available for test are: 
PnetError,  HisError, ModuleError,  ActError, DataE rror, 
BufferError,  ArithmicError,    IndexError,    Conv ertError, 
 
Example: 
  IF BitTest(Error) THEN ErrorFound:=TRUE; 
  (* test if any error bits are set *) 
 
    IF Bittest(Error, IndexError, BufferError) THEN   
      InternalError:=TRUE; 
     (* test if the error was caused by an index er ror  
        or a buffer error *) 
 
BitTest(Transmission, TransmissionErrorBit) 
Using Bittest on TRANSMISSION allows a test to be made on the error bits generated by the 
P-NET operating system. Bittest is true if the corresponding error bits are true. Transmis-
sionErrorBit is a mask (16 bits), where the bits correspond to the error bits within the field 
variable ErrorCode from the InterFaceErrorBuffer (see the WHEN ERROR chapter). 
 
Example: 



502 052 08 
 

Manual Process-Pascal 107/144 

  IF BitTest(Transmission,$0020) THEN 
    ShortCircuitError:=TRUE; 
  (* test if the P-NET is short-circuited *) 
 

34.2.2  CLEAR 
  Clear (Error [,errorbit, .., errorbit]); 
 
Clear is used to clear error bits, generated by the automatic error detection system. (Also 
see WHEN ERROR, DISABLE(ERROR), ENABLE(ERROR)). If the bit specification is omit-
ted, all error bits are cleared, otherwise the specified error bits are cleared. 
 
The different error bits are: 
PnetError,  HisError,ModuleError,  ActError,DataErr or, 
BufferError,  ArithmicError,    IndexError,    Conv ertError 
 
Example: 
Clear(Error); 
  (* clear all error bits *) 
Clear(Error, BufferError, IndexError); 
  (* clear buffer error and index error bits *) 
 
 

34.2.3 DISABLE 
  Disable (Error [,errorbit, .., errorbit]); 
 
Disable(Error) 
Disable is used to disable errors generated by the automatic error detection system. (Also 
see WHEN ERROR, CLEAR(ERROR), ENABLE(ERROR)). If the bit specification is omit-
ted, all errors are disabled, otherwise the specified errors are disabled. 
 
The various errors to disable are: 
PnetError,  HisError,ModuleError,  ActError,DataErr or, 
BufferError,  ArithmicError,    IndexError,    Conv ertError, 
PnetReport,  ModuleReport,      DataReport 
 
Example: 
Disable(Error);  (*disable all errors. i.e. Disable  the entire  
                   automatic error detection system *) 
 
Disable(Error, ModuleError, DataError);       (* di sable module and 
                  data errors detected during P-NET  transmission *) 
 

34.2.4 ENABLE 
  Enable (Error [,errorbit, .., errorbit]); 
 
Enable(Error)  



502 052 08 
 
 

108/144 Process-Pascal Manual 

Enable is used to Enable errors that are generated by the automatic error detection system. 
(Also see WHEN ERROR, CLEAR(ERROR), DISABLE(ERROR)). If the bit specification is 
omitted, all errors are enabled, otherwise the specified errors are enabled. 
 
The different errors that can be enabled are: 
PnetError,  HisError,ModuleError,  ActError,DataErr or, 
BufferError,  ArithmicError,    IndexError,    Conv ertError, 
PnetReport,  ModuleReport,      DataReport 
 
Example: 
Enable(Error);     (*enable all errors. i.e. Enable  the  
                     entire automatic error detecti on system *) 
 
Enable(Error, PnetError, PnetReport); 
(* enable P-NET errors detected during P-NET transm ission and pro-
duce a  report. i.e. The operating system stores an  element in the 
InterFaceErrorBuffer *) 
 
 

34.2.5  RAISE 
Raise ([TaskIdentifier,] Error [,errorbit, .., erro rbit]); 
 
Raise is used to force an error state, ignoring the automatic error detection system. (Also see 
WHEN ERROR, CLEAR(ERROR), DISABLE(ERROR) and ENABLE(ERROR)). If the bit 
specification is omitted, all errors will be raised, otherwise only the specified errors will be 
raised. An error can be raised in a specific task denoted by TaskIdentifier, otherwise the error 
will be raised within the task that called the procedure. 
 
The various errors that can be raised are: 
PnetError,  HisError,ModuleError,  ActError,DataErr or, 
BufferError,  ArithmicError,    IndexError,    Conv ertError, 
 
Examples: 
Raise(CommTask, Error); 
(* raise all errors in the communication task. i.e.  Force an error 
state and move program execution to the latest WHEN  ERROR part next 
time the task  runs *) 
 
Raise(Error, PnetError); 
(* raise P-NET error. i.e. Force an error state and  move program 
execution to the last WHEN ERROR part *) 
 

34.2.6  RETRYIFLEGAL 
RetryIfLegal; 

 
In a situation where the program has detected a transmission error and program execution 
has been moved to the WHEN ERROR part, the program can retry the P-code that caused 
the error. To do so, a standard procedure RetryIfLegal must be called. 
 



502 052 08 
 

Manual Process-Pascal 109/144 

WARNING: When using RetryIfLegal, the program execution retries the P-code in which the 
error occurred, and there is a risk of an infinite loop, or a very slow system in the event of 
many errors. If using the RetryIfLegal procedure, a counter should always be implemented, 
and a maximum value for the counter tested, to avoid program locks. The RetryIfLegal pro-
cedure can only be executed if the "WHEN ERROR program" was invoked by a transmission 
error. 
 

34.2.7  RETURN 
Return; 

 
The procedure is used to return program execution from a WHEN ERROR part. The program 
execution returns to the statement that caused the error and continues with the P-code im-
mediately following. The procedure can only be called from within a WHEN ERROR THEN 
program part. 
WARNING: When using RETURN, there is a risk of erroneous data in the succeeding calcu-
lations. 
 
Example: 
  When Error THEN 
  BEGIN 
    i:=i+1; 
    IF i > MaxTries THEN Return; 
  END; 
 

34.3 Display handling 

34.3.1 BOX 
  Box([peninfo,] SizeX, SizeY); 
 
This procedure draws a box figure as a rectangle. The box is drawn with FOREGROUND 
COLOR for the specified pen, starting in the current pen position. The size of the box is 
specified in SizeX and SizeY. When the procedure has been completed, the pen position 
will have moved SizeX pixels in the X-direction and SizeY pixels in the Y-direction. 
 
Example: 
  Box(MyPen, 25, 50); 
  (* A box is drawn on the screen with a size of 25  by 50 pixels *) 
 
34.3.2  BOXTO 
  BoxTo([peninfo,] PosX, PosY); 
 
This procedure draws a box figure as a rectangle from the current pen position to 
(PosX,PosY). PosX and PosY are relative to the upper left corner of the window. The box is 
drawn with FOREGROUND COLOR for the specified pen. The size of the box is deter-
mined by the current pen position and PosX and PosY. The pen position is not changed. 
 
Example: 
BoxTo(MyPen, 150, 240); 



502 052 08 
 
 

110/144 Process-Pascal Manual 

(* A box is drawn on the screen starting at the cur rent pen position 
and ending at position (150,240) relative to the up per left corner 
of the window *) 
 

34.3.3  CURSORWITHIN 
  CursorWithIn([peninfo,] Width, Height):BOOLEAN 
 
CursorWithIn checks to see whether the cursor is positioned within a certain field. The upper 
left corner of the field is specified by peninfo. The size of the field (width and height) is de-
fined in pixels. If the cursor is positioned within the field, the function returns TRUE, otherwise 
FALSE is returned. 
 
Example: 
IF CursorWithIn(MyPen,20,20) THEN Found:=TRUE; 
(* check if the cursor is positioned within a field  of size 20 by 20 
pixels relative to the current pen position*) 
 

34.3.4  CURSORTO  
CursorTo([peninfo], x, y); 
 
The procedure moves the cursor position by (x,y) relative to the reference point for peninfo. 
If peninfo is omitted, then the pen variable within the block called DefaultPen is used. The 
cursor is automatically removed from the old position and appears at the new position. If a 
cursor has not been previously selected with the SetCursor procedure, an error is gener-
ated. 
 
Example: 
CursorTo(MyPen, CursorStepX, CursorStepY); 
(* The cursor is moved to position (CursorStepX, Cu rsorStepY) rela-
tive to the reference point for MyPen *). 
 

34.3.5  CURSORTOABS  
CursorToAbs (x, y); 
 
The procedure sets the absolute cursor position to (x,y). The cursor is automatically re-
moved from the old position and then displayed at the new position. If a cursor has not 
been previously selected with the SetCursor procedure, an error is generated. 
 
Example: 
CursorToAbs(CursorOffsetX, CursorOffsetY); 
(* The cursor is moved to position (CursorOffsetX,C ursorOffsetY) *) 
 

34.3.6  DISPLAY  
  Display([peninfo,] information: size [:format]); 
 
Display is used to show a bitmap, for writing text or for displaying the value of a variable, an 
expression or a function on the screen. The bitmap, text or variable is displayed with the 



502 052 08 
 

Manual Process-Pascal 111/144 

reference point for the first character being peninfo.x and peninfo.y. When the procedure 
has been completed, peninfo.x will have been moved to the right by “size” (width of one 
digit) for numerals, or to after the last character or by the number of pixels specified by 
FORMAT for strings). i.e peninfo.x will be pointing to the first pixel following the field. If pen-
info is omitted, then the pen variable within the block called DefaultPen will be used. 
 
INFORMATION must be of simple type or a string or bitmap. The Information can be de-
clared as internal to the controller, or it can be declared to be located on the P-NET net-
work. 
 
If the information is a string type , the parameter SIZE is optional and denotes the maxi-
mum field width , in pixels, for representing the string on the screen. If the field width is lar-
ger than the actual string, the remaining field is filled with blank pixels (background colour), 
otherwise the string is written until the maximum field width has been exceeded. If size is 
omitted, the string is written using the actual number of characters. When the procedure 
has been completed, PenInfo.X will have been moved SIZE pixels to the right, or to the 
pixel following the last written character if SIZE is omitted. 
 
If the information is a type other than a string, SIZE denotes the number of characters  
that are to be written for the variable. The parameter FORMAT is a value defining how to 
present the information on the screen. 
 
If information is an expression, a variable or a result of type TIMER, REAL or LONGREAL, 
format has the following meaning: 
 
 0-.. The number of digits to be displayed to the right of the decimal point. The default 

value is 2. 
 -1 The variable is presented in floating-point format. 
 -2 The variable is displayed with an exponent. For a type TIMER or REAL, the ex-

ponent will consist of 2 digits and a sign. For a type LONGREAL, the exponent 
will consist of 3 digits and a sign. 

 
If information is a variable or a result of type BYTE, WORD INTEGER or BOOLEAN, format 
has the following meaning: 
 0 Decimal representation. This is the default value. 
 -3 Hexadecimal representation. 
 -4 Binary representation. 
 -5 Decimal representation with leading zeros. 
 
If information is a variable or a result of type CHAR or BYTE, format has the following addi-
tional meaning: 
 -6 ASCII representation. 
 
If information is of type bitmap or string, format is not used. 
 
Example: 
  (* b is a BYTE, r is a REAL *) 



502 052 08 
 
 

112/144 Process-Pascal Manual 

  (* gives the following format:  *) 
 
  b:=255; 
  Display(b:3:0);   (* 255 *) 
  Display(b:4:-3);  (* 00FF *) 
  Display(b:8:-4);  (* 11111111 *) 
 
  r:=12.345678; 
  Display(r:7:2);   (*   12.34 *) 
   Display(r:7:-1);  (* 12.3456 *) 
  Display(r:7:-2):  (* 1.2e+01 *) 
 
  Display('Process-Pascal');     (* Process-Pascal *) 
  Display('Process-Pascal':60);  (* Process-Pa *) 
      (* each character is 6 pixels wide *) 
 
  Display(LargeChar,'Process-Pascal'); 
  Display(InputString); 
  Display(ValveSymbol); 
 

34.3.7 LINE 
  Line([peninfo,] OffsetX, OffsetY); 
 
This procedure draws a line to a point that is a relative distance from the current pen position. 
The line is drawn using the FOREGROUND colour for the specified pen, starting from the 
current pen position. The finishing point of the line is specified by OffsetX and OffsetY as a 
relative pixel distance from the current pen position. The thickness of the line is 1 pixel. When 
the procedure has finished, the pen position will have moved OffsetX pixels in the X-direction 
and OffsetY pixels in the Y-direction. The pixel at the final pen position is not drawn. 
 
Example: 
Line(MyPen, 50, 0); 
(* Draws a vertical line on the screen with a lengt h of 50 pixels*) 
 

34.3.8  LINETO 
  LineTo([peninfo,] PosX, PosY); 
 
This procedure draws a line from the current pen position to position (PosX,PosY). PosX and 
PosY are relative to the upper left corner of the window. The line is drawn using the FORE-
GROUND colour for the specified pen. The thickness of the line is 1 pixel. The pixel at posi-
tion (PosX,PosY) is not drawn. The pen position is not changed. 
 
Example: 
LineTo(MyPen, 250, 40); 
(* A line is drawn on the screen starting at the cu rrent pen posi-
tion and ending at position (250,40) relative to th e upper left cor-
ner of the window. *) 
 



502 052 08 
 

Manual Process-Pascal 113/144 

34.3.9  MOVECURSOR  
  MoveCursor (x, y); 
 
The procedure moves the cursor position by (x,y) relative to the absolute cursor position. The 
cursor is automatically removed from the old position and displayed at the new position. If a 
cursor is not previously selected with the SetCursor procedure, an error is generated. 
 
Example: 
MoveCursor(CursorStepX, CursorStepY); 
(* The cursor is moved CursorStepX pixels in the x- direction and 
CursorStepY pixels in the y-direction *). 
 

34.3.10  MOVEPEN  
  MovePen ([peninfo,] x, y); 
 
The procedure moves the absolute pen position of peninfo to a position (x,y) pixels from the 
original absolute pen position. If peninfo is omitted, then the pen variable within the block 
called DefaultPen is used. 
 
Example: 
MovePen(36, 16);  
(* The absolute pen position for DefaultPen is move d 36 pixels in 
the x-direction and 16 pixels in the y-direction *) . 
 

34.3.11  PENREFTO  
PenRefTo ([peninfo,] x, y); 
 
The procedure sets the reference point and the absolute pen position within peninfo to posi-
tion (x,y). If peninfo is omitted, then the pen variable within the block called DefaultPen is 
used. 
 
Example: 
PenRefTo(MyPen, 0, 0);  
(* The reference point and the absolute pen positio n for MyPen is 
set to the top left corner of the screen *). 
 

34.3.12  PENTO  
  PenTo ([peninfo,] x, y); 
 
The procedure moves the absolute pen position within peninfo to a position (x,y) relative to 
the reference point. If peninfo is omitted, then the pen variable within the block called Default-
Pen is used. 
 
Example: 
PenTo(60, 8);  



502 052 08 
 
 

114/144 Process-Pascal Manual 

(* Moves the absolute pen position for DefaultPen 6 0 pixels in the 
x-direction and 8 pixels in the y-direction, relati ve to the refer-
ence point *). 
 

34.3.13  PENTOABS  
  PenToAbs ([peninfo,] x, y); 
 
The procedure sets the absolute pen position within peninfo to position (x,y). If peninfo is 
omitted, then the pen variable within the block called DefaultPen is used. The reference point 
is not changed. 
 
Example: 
  PenToAbs(20, 32);  
  (* The absolute pen position for DefaultPen is se t to (20,32) *) 
 

34.3.14  PERFORMUPDATE  
  PerformUpdate; 
 
The procedure is used to pass a value from InputString  (a globally declared variable into 
which characters from the keyboard are placed), to another variable. The procedure converts 
the digits in InputString and stores these data in the variable in the appropriate format. The 
procedure will only pass the value to the variable if the cursor is positioned within the field of 
the displayed variable, and only if that variable has been displayed on the screen using the 
procedure UPDATE. If the cursor is not positioned within the field of a variable, the procedure 
has no effect. 
 
Example (keyboard task): 
  InputString  := ‘123’; 
  Performupdate;  
(*Will pass the numeric value to the variable point ed to by the cur-
sor, and display it in the format defined in UPDATE *)  
 

34.3.15 SETCURSOR 
  SetCursor(CursorRef); 
 
The procedure selects CursorRef to be the current cursor. 
CursorRef could be defined as a LARGEBITMAP, where ReferenceX and ReferenceY deno-
te an offset from the upper left corner of the cursor to a reference point, which is the point that 
must be inside the field on the screen when a variable is to be updated. If CursorRef is de-
fined as a SMALLBITMAP, the upper left corner of the cursor is used as the reference point 
(0,0). Before SetCursor is called, the colours and its desired position on the screen should be 
selected. Calling SetCursor will automatically display the cursor according to its previous set-
tings. If a cursor had already been previously selected with SetCursor, it will be removed from 
the screen before the new cursor is displayed. 
 
Example: 
  SetCursor(BlackCursor); 



502 052 08 
 

Manual Process-Pascal 115/144 

 

34.3.16 SETVIDEO  
  SetVideo(peninfo, Width_of_screen, Height_of_scre en); 
 
The procedure clears the screen by setting the entire videoram to background colour. Fur-
thermore, it passes the width and height for the screen to ScreenInfo.Width and Screen-
Info.Height in the video controller. The cursor is automatically displayed on the screen again 
after clearing.  
 
It is recommended that this procedure be used to clear the screen when selecting between 
various screen layouts, since it will clear information about valid cursor positions within an 
update field on the previous display from the operating system. This will prevent updating 
data belonging to a previous display after selecting the new display. In the PD5020 controller, 
all windows are automatically closed. 
 
Example: 
  SetVideo(DefaultPen, ScreenWidth, ScreenHeight); 
 

34.3.17  UPDATE  
  Update([peninfo,] variable: size [: format] [: Up dateValid]); 
 
This is a very powerful procedure, which can be used to change the value of a variable from 
the keyboard. It combines the ability to continuously display the current value of a variable on 
the screen and to assign a new value to this variable from the keyboard. The variable can be 
declared as an internal variable within the controller, or it can be declared as located some-
where within the P-NET network. 
It is only possible to change or update a variable, if the cursor is positioned within the field on 
the screen where the variable is shown. If the cursor is not inside the field, the variable can-
not be changed from the keyboard, and Update  operates like the standard procedure Dis-
play . (Som i PP 4.0-manualen, ellers er det ikke forståeligt) 
 
Update can be used on simple types and string types. The variable is displayed with the ref-
erence point for the first character at (peninfo.x, peninfo.y).  
 
If peninfo is omitted, then the pen variable within the block called DefaultPen, is used. 
 
If the variable is a string type , the parameter SIZE denotes the maximum field width, in 
pixels , for presenting the string on the screen. If the field width is larger than the actual string, 
the remaining field is filled with blank pixels, otherwise the string is written until the maximum 
field width has been exceeded. When the procedure has been completed, PenInfo.X will 
have been moved SIZE pixels to the right. 
 
If the variable is not a string type, SIZE denotes the number of characters  that are to be 
displayed as the variable. The parameter FORMAT is a value for defining the way that infor-
mation is presented on the screen. When the procedure has been completed, peninfo.x will 
have been moved by (size * width of one digit) to the right. (peninfo.x will be pointing to the 
first pixel after the field). 



502 052 08 
 
 

116/144 Process-Pascal Manual 

 
If the variable is of type TIMER, REAL or LONGREAL, format has the following meaning: 
 0-.. The number of digits to be displayed to the right of the decimal point. 2 is the de-

fault value. 
 -1 The variable is presented in floating-point format. 
 -2 The variable is displayed with an exponent. For a type TIMER or REAL, the ex-

ponent is always displayed with 2 digits and a sign. For a type LONGREAL, the 
exponent is always displayed with 3 digits and a sign. 

 
If the variable is of type BYTE, WORD INTEGER or BOOLEAN, format has the following 
meaning: 
 0 Decimal representation. This is the default value. 
 -3 Hexadecimal representation. 
 -4 Binary representation. 
 -5 Decimal representation with leading zeros. 
 
If the variable is of type CHAR or BYTE, format has the following additional meaning: 
 -6 ASCII representation. 
 
If the variable is of type string, format is not used. 
 
UpdateValid is a boolean or a booelan expression. If UpdateValid is ON, the variable can be 
changed from the keyboard. If UpdateValid is OFF, the procedure operates like the proced-
ure Display . UpdateValid can be any boolean or boolean expression defined by the user and 
is independent of the cursor position. The default value for UpdateValid is ON. 
 
Examples: 
  (* b is a BYTE, CharVal is a CHAR, r is a REAL *)  
  (* Str is a string[20] and PassWordOK is a boolea n *) 
  (* The values can be presented in the following f orms:  *) 
 
  b:=255; 
  Update(b:3:0);   (* 255 *) 
  Update(b:4:-3);  (* 00FF *) 
  Update(b:8:-4);  (* 11111111 *) 
 
  Update(CharVal:1:-6); 
  (* the first character from the input string is m oved directly to 
the variable without any conversion *) 
 
  r:=12.345678; 
  Update(r:7:2);   (*   12,34 *) 
   Update(r:7:-1);  (* 12,3456 *) 
  Update(r:7:-2);  (* 1,2e+01 *) 
 
  Update(Str:120:PassWordOK); 



502 052 08 
 

Manual Process-Pascal 117/144 

 

34.4 Miscellaneous 
 
 

34.4.1 AND 
  And(variable, expression); 
 
This procedure performs a logical AND instruction directly to the variable using the expres-
sion parameter. The variable can be declared as internal or external. 
 
Example: 
  And(FlagReg, $55); 
    (* The FlagReg variable is And’ed with $55 *) 
  

34.4.2 BUFFEREMPTY  
  BufferEmpty(buffername):BOOLEAN 
 
Before a buffer is assigned to a variable, the program must check whether the buffer is 
empty. This is achieved using BufferEmpty(buffername). The function returns a TRUE boo-
lean if the buffer is empty. If an empty buffer is assigned to a variable, an error is generated, 
and the value of the variable will be undefined. 
 
Example: 
  IF BufferEmpty(KeyboardBuffer) THEN ChangeTask 
 

34.4.3  BUFFERFULL  
  BufferFull(buffername):BOOLEAN 
 
Before a variable is assigned to a buffer, the program must check whether the buffer is full. 
This is achieved using BufferFull(buffername). The function returns a TRUE boolean if the 
buffer is full. If a variable is assigned to a buffer and the buffer is already full, an error is gen-
erated, and the value will not be stored in the buffer. 
 
Example: 
  While BufferFull(KeyboardBuffer) DO ChangeTask; 
 

34.4.4 CONVERT 
  Convert(variable):integer_type 
 or 
  Convert(variable):boolean_array_type 
 
A special typecasting can be performed to translate integer types into boolean array types 
and vice versa, using the CONVERT function. The function is called with the variable of the 
type that is to be converted, and then the function transforms it into the other type.  
 



502 052 08 
 
 

118/144 Process-Pascal Manual 

If the function is called with an integer type, then the result type must be a boolean array type, 
having a size in bytes corresponding to the integer type.  
 
If the function is called with a boolean array type, then the result type must be an integer type, 
having a size in bytes corresponding to the boolean array type. 
NOTE: the boolean array must start with index 0. 
 
Example: 
   VAR 
    Bit8Var  : ARRAY[0..7] OF BOOLEAN; 
    Bit16Var : ARRAY[0..15] OF BOOLEAN; 
    ByteVar  : BYTE; 
    IntVar   : INTEGER; 
 
  BEGIN 
  ByteVar:=Convert(Bit8Var); 
    (* convert a 8 bit boolean array to a byte *) 
 
  Bit16Var:=Convert(IntVar); 
    (* convert an integer to a 16 bit boolean array  *) 
 
 

34.4.5  INITBUFFER  
  InitBuffer(buffername); 
 
Buffers must always be initiated before they are used for the first time. This is instigated by 
using the standard procedure InitBuffer(buffername). 
 
Example: 
  InitBuffer(KeyboardBuffer); 
 

34.4.6  MYSWNO 
  MySWNo(identifier, SoftWireNo, VarOffset); 
 
This procedure finds the SoftWire number of a global constant or variable and returns this 
number in SoftWireNo. If the identifier denotes a field in a complex variable, the actual offset 
for this field, in bytes, is returned in VarOffset. SoftWireNo and VarOffset must both be inte-
ger type variables. 
 
Examples: 
  MySWNo(Recipe[Last].Stirring, SWNo, VarOffset); 
 
  MySWNo(DigitalModule, SWNo, VarOffset); 
 

34.4.7  OR 
  Or(variable, expression); 
 



502 052 08 
 

Manual Process-Pascal 119/144 

This procedure performs a logical OR instruction directly to the variable using the expression 
parameter. The variable can be declared as internal or external. 
 
Example: 
  Or(FlagReg, $80); 
    (* The FlagReg variable is Or’ed with $80 *) 
 

34.4.8  POINTEROK 
  PointerOK(ptr):BOOLEAN 
 
This function is used to test whether a pointer is set to point at a variable of the correct type. 
The function returns TRUE if Ptr is valid. The function is a boolean type. 
 
Example: 
  IF NOT PointerOK(MyPtr) THEN MyPtr -> MyDefaultVa lue; 
 

34.4.9  POINTERTONODE 
  PointerToNode(Node, SWNo [, Offset [, BitNo]]) 
 
When it is required to access variables that are not declared within the controller, Pointer-
ToNode is used to set a pointer to point at the variable specified by the parameters in the 
function call. Node denotes an index for a node element in the NodeList, which specifies the 
node address for the module and the module type. SWNo denotes the Softwire number for 
the variable it is required to access in the module specified by Node. Offset denotes an offset 
in bytes, if access is to be made to a complex variable. BitNo denotes a bit number, calcu-
lated from the Offset. See the chapter ACCESSING NOT DECLARED VARIABLES, for fur-
ther information. 
 
Example: 
  MyPtr-> PointerToNode(NodeNo, SoftwireNo, IndexNo *4); 
 

34.4.10  STRVAL 
  StrVal(str[:mode]) : Result 
 
This function converts the numeric value depicted by a string type expression, STR, into a 
numeric equivalent. MODE denotes the format in which the string will be represented and it is 
an integer type. The values for Mode are described below. If Mode is omitted, the default 
value is 0. If the character sequence in the string is illegal according to the specified mode, an 
error is generated (ConvertError), and the result is stored as 0 (zero). If the string represents 
a real value including a decimal point, the character for the decimal point must correspond 
with the selected CountryCode, otherwise an error will be generated. (Please refer to the 
manual for the controller in question, for further details about CountryCode). The function 
type is the same type as that on the left side of the statement, or the same type as the other 
operands within the expression. 
 
If the result type of the function is of type TIMER, REAL or LONGREAL, mode is not used. 



502 052 08 
 
 

120/144 Process-Pascal Manual 

If the result type of the function is a simple type other than TIMER, REAL or LONGREAL, 
mode has the following meaning: 
 0 The string is represented in decimal with leading spaces. 
 -3 The string is represented in hexadecimal. 
 -4 The string is represented in binary. 
 -5 The string is represented in decimal with leading zeros. 
 
Example: 
  RealRead:=StrVal(LoadString); 
(*convert a loaded string from external equipment t o a real value*) 
 

34.4.11  TAB 
  Tab (Position [,Char]):STRING 
 
This function is used to fill out a string with a specified character, up to a selected position 
within that string. If the string length is less than POSITION, the string will be appended with 
the character CHAR until the string length is equal to POSITION, otherwise the function does 
nothing. If CHAR is omitted, a space character will be used as default. 
 
Example: 
  Str:='Setpoint ' + Tab(25,'.') + SetPoint:6:1 + '  kg'; 
 

If SetPoint is equal to 135.2 kg, Str will be as follows: 
  Str = 'Setpoint ................ 135.2 kg' 
 

34.4.12  TESTANDSET 
  TestAndSet(bool):BOOLEAN 
 
This function is used to test a boolean value, bool, and, if the boolean value is FALSE, SET it 
to TRUE. If the boolean value is already TRUE, the function returns TRUE and the boolean is 
not affected. The function returns the value of the boolean as a result of the TEST part of the 
function. This function can be used to test a variable to see if it is FALSE (free), and if so, 
then set it to TRUE (reserve it), all in one instruction. This facility is very useful in multitasking 
systems, when many tasks have access to the same variables. BOOL must be a global vari-
able. The function is a boolean type. 
 
Example: 
  While TestAndSet(PrinterReserved) DO ChangeTask; 
  (* Wait until the printer is available and then r eserve it *) 
 

34.4.13  VAL 
  Val(x) 
 
This function is used to change the value of the expression x to another type. The expression 
x must be an ordinal type. The function type is the same type as that on the left side of the 
statement, or the same type as the other operands in the expression. 
 



502 052 08 
 

Manual Process-Pascal 121/144 

Example: 
  TYPE 
    ColourType = (Red, White, Green, Blue, Black, Y ellow); 
  VAR 
    Colour : ColourType; 
  BEGIN 
    Colour:=Val(4);  (* Colour is set to Black *) 
 
 

34.4.14  VARNAME 

 
  VarName (SoftWireNumber, [Offset]):STRING 
 
This standard function is used in connection with the automatic error detection system, and it 
returns the string constant that has been declared after NAME within the global variable dec-
laration part. The function is called with the number that is the SoftWire number of the vari-
able. The fields ModuleSWNo and VarSWNo in an element from the InterFaceErrorBuffer 
hold the SoftWire numbers for the variables that caused the error. If the variable at SoftWire-
Number has been declared without a NAME, the function returns an empty string. 
 
OFFSET is used to get the NAME defined for a channel in an interface module, where the 
channel number is used as the offset. The default value is 0. 
 
Example: 
  ErrorString := 'Error in ' + VarName(ErrorBlock.S WNo); 
 
  ChannelNo:= ErrorBlock.VarAddr DIV $10; 
  ErrorText:= VarName(ErrorBlock.SWNo, ChannelNo); 
 
  Str := VarName(ErrorBlock.SWNo); 
 

34.5 Standard constants 
 
OFF has the same meaning as FALSE . 
 
ON has the same meaning as TRUE. 
 
 
MAXINT = 32767, the maximum integer value. 
 
 
NIL is a constant for a pointer. A pointer value set to NIL does not point to anything. 



502 052 08 
 
 

122/144 Process-Pascal Manual 

35 Comparing Process-Pascal with ISO 7185 Standard 
Pascal 
This list compares Process-Pascal with ISO 7185 STANDARD PASCAL as defined in the 
book PASCAL USER MANUAL AND REPORT  THIRD EDITION by Kathleen Jensen and 
Niklaus Wirth (published by Springer-Verlag). 
 

35.1 Exceptions to ISO 7185 STANDARD PASCAL 
In ISO 7185 STANDARD PASCAL, an identifier can be of any length and all characters are 
significant. In Process-Pascal, an identifier can be of any length, but only the first 100 charac-
ters are significant. 
 
In ISO 7185 STANDARD PASCAL, a comment can begin with { and end with *), or begin with 
(* and end with }. In Process-Pascal, comments must begin and end with the same set of 
symbols. 
 
In ISO 7185 STANDARD PASCAL, there is an error if the value of the selector in a CASE 
statement is not equal to any of the case constants. In Process-Pascal, this is not an error. 
Instead, the CASE statement is ignored, unless it contains an ELSE clause. 
 
In ISO 7185 STANDARD PASCAL, statements that threaten the control variable of a FOR 
statement are not permitted. In Process-Pascal, this requirement is not enforced. 
 
ISO 7185 STANDARD PASCAL can operate on files. It is not possible to operate on files in 
Process-Pascal, and for that reason the following procedures are not implemented: 
 Pack  Unpack 
 Read  Readln 
 Write  Writeln 
 Eof(f)  Eoln(f) 
 Get(f)  Put(f) 
 Reset(f) Rewrite(f) 
 Page(f) 
 
ISO 7185 STANDARD PASCAL can operate with pointers. It is not possible to use dynamic 
pointers in Process-Pascal, and for that reason the following procedures are not imple-
mented: 
 Dispose(q) New(p) 
 
ISO 7185 STANDARD PASCAL can operate with recursive procedures and functions. It is 
not possible to use recursivity in Process-Pascal. 
 
In ISO 7185 STANDARD PASCAL, a number of arithmetic functions are available. The fol-
lowing functions are not available in Process-Pascal: 
 Arctan(x) Exp(x) 
 Ln(x)  Sin(x) 
 Sqr(x)  Sqrt(x) 
 



502 052 08 
 

Manual Process-Pascal 123/144 

These functions can be written in Process-Pascal by using series. A number of these func-
tions can be found in the Application folder, in a file called MATH.INC. 
 
In ISO 7185 STANDARD PASCAL, the WITH statement can be used. This statement is not 
implemented in Process-Pascal. 
 
Conformant array schemes are not supported by Process-Pascal. 
 

35.2 Extensions to ISO 7185 Standard Pascal 
Process-Pascal is integrated with P-NET, a local area network, which allows use of dis-
tributed data. Process-Pascal has been especially designed for multitasking. 
 
Process-Pascal implements the additional integer types LONGINTEGER, BYTE and WORD, 
and the additional real type LONGREAL. 
 
Process-Pascal implements the additional type TIMER, which is assign compatible with the 
type REAL. A variable of type TIMER will count down in real time when assigned a value. 
 
Process-Pascal implements the additional type BUFFER, which, like an ARRAY type, has a 
fixed number of components of one type. A BUFFER is accessed only by the buffer’s identi-
fier without any indexes. 
 
Process-Pascal implements the additional types VIDEOBITMAP, LARGEBITMAP and 
SMALLBITMAP. 
 
Process-Pascal implements string types, which differ from the packed string types defined by 
ISO 7185 STANDARD PASCAL, in that they include a dynamic-length attribute that can vary 
during execution. 
 
String constants are compatible with the Process-Pascal string types, and can contain control 
characters and other non-printable characters. 
String type variables can be indexed as arrays, to access individual characters in a string. 
 
The relational operators can be used to compare strings. 
 
Process-Pascal implements typed constants, which can be used to declare initialised vari-
ables of all types. 
 
Variables can be declared at absolute memory addresses using an AT ADDRESS clause. 
 
Constant, type, variable, procedure and function declarations can occur any number of times, 
in any order, within a block. 
 
An identifier can contain underscore characters (_) after the first character. Integer constants 
can be written in hexadecimal notation, where such constants are prefixed by a $. 
 



502 052 08 
 
 

124/144 Process-Pascal Manual 

The type of an expression can be changed to another type through a value typecast. 
 
The CASE statement allows constant ranges in CASE label lists, and provides an optional 
ELSE part. 



502 052 08 
 

Manual Process-Pascal 125/144 

35.3 Standard Procedures and Functions  
Process-Pascal implements the following standard procedures and functions, which are not 
found in ISO 7185 STANDARD PASCAL: 
 
 

 
AlarmHornOnOff 
AlarmPulseOn 
And 
BitTest 
Box 
BoxTo 
BufferEmpty 
BufferFull 
ChangeTask 
Clear 
ClearWindow 
CloseWindow 
ContinueTask 
ContrastControl 
Convert 
ConvertErrorCode 
CursorInWindow 
CursorTo 
CursorToAbs 
CursorWithin 
CyclicTask 
Disable 
Display 
DisplayOnOff 
Enable 
InitBuffer 

 
InitPort 
InitPort1 
InterruptTask 
LedOnOff 
LightControl 
LightOnOff 
Line 
LineTo 
MaxRunTime 
MoveCursor 
MovePen 
MySWNo 
MyTaskNo 
OpenWindow 
Or 
PCodeCall 
PenRefTo 
PenTo 
PenToAbs 
PerformUpdate 
PointerOk 
PointerToNode 
Raise 
RestartTask 
RetryIfLegal 
Return 

 
SetCharacterGenerator 
SetColors 
SetCursor 
SetCursorColors 
SetCursorType 
SetInputString 
SetScreen 
SetVideo 
SetWindow 
SetWindowFrame 
StopTask 
StrVal 
SystemCall 
Tab 
TestAndSet 
TimedInterruptTime 
TimedTask 
Update 
Val 
Varname 
ZoomIn 
ZoomInHor 
ZoomOut 
ZoomOutHor 
ZoomOutVer 

 



502 052 08 
 
 

126/144 Process-Pascal Manual 

 

35.4 Reserved words in Process-Pascal 
 

 
ADDRESS 
AFTER 
AND 
ARRAY 
AT 
BEGIN 
BITMAP 
BOOLEAN 
BUFFER 
BYTE 
CASE 
CHANNEL 
CHAR 
CONFIG 
CONST 
CYCLIC 
DEFINE 
DIV 
DO 
DOWNTO 
ELSE 
END 
ERROR 
EXTERNAL 
FALSE 
FOR 
FORWARD 
FROM 
FUNCTION 
 

 
GOTO 
IF 
IMPORT 
IN 
INITIALIZE 
INTEGER 
INTERCOM 
INTERFACE 
INTERNAL 
INTERRUPT 
LABEL 
LARGEBITMAP 
LONGINTEGER 
LONGREAL 
LOOP 
MAXINT 
MOD 
MODULE 
NAME 
NET 
NIL 
NOT 
OF 
OFF 
ON 
OR 
PLACE 
POINTER 
PROCEDURE 
 

 
PROGRAM 
READY 
REAL 
REALDATE 
RECORD 
REPEAT 
RETURN 
RUNTIME 
SET 
SMALLBITMAP 
SOFTWIRE 
SOFTWIREINTERRUPT 
STRING 
SUSPENDED 
TASK 
THEN 
TIMEDINTERRUPT 
TIMER 
TO 
TRUE 
TYPE 
UNTIL 
UNUSED 
VAR 
VIDEOBITMAP 
WHEN 
WHILE 
WITH 
WORD 
 
 

 



502 052 08 
 

Manual Process-Pascal 127/144 

35.5 Compiler directives 
Compiler directives control some of the compiler’s functions, and are introduced as com-
ments having a special syntax. Process-Pascal permits compiler directives to be inserted 
wherever comments might be used. 
 
A compiler directive starts with a $ as the first character after the opening delimiter. The $ is 
immediately followed by a letter that designates the particular directive. 
 
{$L-}  
LISTING OFF 
This directive is a switch directive that turns OFF the listing of the source file and error mes-
sages in the .LST file. 
 
{$L+}  
LISTING ON 
This directive is a switch directive that turns ON the listing of the source file and error mes-
sages in the .LST file. 
 
{$I'filename'}  
INCLUDE FILE 
This directive instructs the compiler to include the named file in the compilation. The file is in-
serted in the compiled text after the directive. If filename  does not specify a directory, then 
the current directory is searched. 
 
There are no restrictions on the use of include files. This means that an include file can be 
specified in the middle of a statement part. 
 
Process-Pascal allows, at most, five input files to be open at any given time. This means that 
include files can be nested up to five levels deep. 
 
{$P=nn}  
LINES per PAGE in LST FILE 
This directive determines how many lines per page there shall be in the .LST file. The de-
fault value is 60 lines per page. nn  is an integer value. 
 
{$MIB property}  
MIB PROPERTY 
This directive is used to set one or more default properties to be used in VIGO. The Compiler 
can automatically generate a SMB file that holds a description of all constants and variables 
declared within the Process-Pascal program. Each constant and variable has its own set of 
properties to describe visibility, backup requirement, simulation, permission for read access, 
permission for write access or protected write access.  
 
The following properties are available: 
 
 MIB_Invisible    MIB_Visible 



502 052 08 
 
 

128/144 Process-Pascal Manual 

 MIB_NoBackup    MIB_Backup 
 MIB_Simulation    MIB_NoSimulation 
 MIB_NoReadAccess   MIB_ReadAccess 
 MIB_NoWriteAccess   MIB_WriteAccess 
 MIB_NoProtectedWriteAccess MIB_ProtectedWriteAccess 
 
The property following the $MIB directive can be one or more of the above properties in any 
combination. 
 
Example: 
  {$MIB MIB_Visible, MIB_Backup } 
 
This will set the default values for MIB properties for the succeeding declarations to be 
Visible and with the Backup property set. 
 
{$IFDEF x}…{$ELSE}…{$ENDIF}  
Two basic conditional compilation constructs closely resemble Process-Pascal's if state-
ment. The first construct 
 
{$IFDEF x} 
  ... 
{$ENDIF} 
 
causes the source text between {$IFDEF x} and {$ENDIF} to be compiled only if the condi-
tion specified in {$IFDEF x} is True. If the condition is False, the source text between the 
two directives is ignored. 
The condition is true if x is inserted as a compiler directive in the option window in Process-
Pascal. 
 
The second conditional compilation construct: 
 
{$IFDEF x} 
  ... 
{$ELSE} 
  ... 
{$ENDIF} 
 
causes either the source text between {$IFDEF x} and {$ELSE} or the source text between 
{$ELSE} and {$ENDIF} to be compiled, depending on the condition specified by the 
{$IFDEF x}. 
The condition is true if x is inserted as a compiler directive in the option window in Process-
Pascal. 
 
Here are some examples of conditional compilation constructs: 
 
{$IFDEF Large} 
   Version:=Large; 



502 052 08 
 

Manual Process-Pascal 129/144 

{$ENDIF} 
 
{$IFDEF Large } 
  Version:=Large; 
{$ELSE} 
   Version:=Small; 
{$ENDIF} 
 
{$RAMSTART=nn}  
The RAMSTART directive provides a possibility to tell the compiler the address of the RAM. 
Default value is $FFE000. 
 
{$SW=nn}  
Use this directive to make the next used SoftWire number nn. Following variables are 
placed according to nn. It is possible to set nn to a value less than the current SoftWire 
number. The next variable is placed on the first unused SoftWire number. 
 
{$DEFINE_SECTION <Name>, <StartBlock>, <SectionSize >, <SectorSize>, <Min-
FreeSpace>, <MemoryType>} 
Use this directive to declare memory sections. 
<Name> : name of the declared section 
<StartBlock> the first block in this memory area 
<SectionSize> total size of the memory area 
<SectorSize> the size of each sector 
<MinFreeSpace> the space needed for the operating system to maintain the section 
<MemoryType> The type of memory, e.g. FLASH, RAMINITEEPROM, EEPROM etc. 
Declaring a section to hold variables in flash: 
(* Flash section for data, StartAddr: 1, size: 2.5 MByte, sector-
size: 2 kByte, min. free space: 128 kByte, memoryty pe: FLASH *) 
{$DEFINE_SECTION 'Flash', 1, $280000, $800, $20000,  FLASH} 
To place a variable in the declared section  
Var 
  MyFlashVar : integer SECTION: ‘FLASH’; 
See variable declaration. 
 
{MAXCODESIZE nn}  
Use this directive if the compiler should generate an error if the code size becomes larger 
than nn. This is useful to discover a too large code file at compile time instead of at 
download. 
 
{MAXDATASIZE nn}  
Use this directive if the compiler should generate an error if the data becomes larger than 
nn in size. This is useful to discover a too large data block at compile time instead of at 
download. 



502 052 08 
 
 

130/144 Process-Pascal Manual 

36 Restrictions in Using Process-Pascal 
When programming a controller, the following restrictions must be considered: 
 
When using a controller with a display unit, a cursor must always be defined in the program, 
to avoid unexpected flicker on the screen. 
 
If a variable of the type BUFFER or TIMER is a component of a complex variable, this com-
ponent variable may only be used internally in the controller. (P-NET restriction). 
 
When one complex variable is assigned to another complex variable, at least one of the vari-
ables must be declared internally in the controller. (P-NET restriction). 
 
It is not permitted to use recursive procedures/functions. 
 
Using UPDATE on a local variable declared in a procedure is not allowable, but can be de-
tected, either by the compiler or by the operating system. If it is detected by the operating 
system, an error is generated (Update not allowed). 
 
If a local variable, declared in a global  procedure, is passed to another global  procedure as 
a VAR parameter, and the variable is UPDATE’d, then neither the compiler, nor the operating 
system can detect the failure, and the result of the performed update will be unpredictable. 
 
If an external variable is accessed (via P-NET and a SoftWire number), this SoftWire number 
must not be declared as an indirect array variable. 
 
If a Net address is declared to be a string, the string must not be declared as an indirect vari-
able pointing to another string. 
 
Interrupt on indirect variables is not allowed. 
 
There is a 32 kB limit for one variable in the following controllers: PD30XX, PD4000 and 
PD50XX. 
 
A STRING cannot be appended to another string and stored to itself, example: 
 Str:='str2'; 
 Str:='text' + Str; 
then Str = 'texttext', but it really should be 'textstr2'. 
 
If two BOOLEANs are compared, and one is a part of a variant record, which shares the 
memory location with e.g. a BYTE, a COMPARE will only result in TRUE if the BYTE values 
are equal. 
 
Please note that the error codes in a PD 5000 are not the same as in a PD 4000, and the use 
of the Bittest function is therefore not compatible between the two controllers. 
 



502 052 08 
 

Manual Process-Pascal 131/144 

When a TIMEDINTERRUPT task is used with an interrupt time set to less than 2 sec. to ac-
cess data on another network through a gateway controller, this may cause the controller to 
behave “slowly” when there are transmission errors in the “reply-request” issued by the gate-
way controller. A cyclic task should be used instead. 
 
It is not possible to declare Constant strings that include a null character. If a string such as 
UnderOff = #$1B#$2D#$00 (esc-0) is needed, UnderOff should be declared as a variable 
and then each character assigned to the string by means of the Char function. 



502 052 08 
 
 

132/144 Process-Pascal Manual 

37 Syntax Diagrams 
 
 

 
 

:

:

 
 



502 052 08 
 

Manual Process-Pascal 133/144 

 
 

 
 

 
 

 
 

 
 

 
 



502 052 08 
 
 

134/144 Process-Pascal Manual 

 
 

:

:

:

 
 



502 052 08 
 

Manual Process-Pascal 135/144 

:

:

:

 
 

 
 
 
 
 

 
 



502 052 08 
 
 

136/144 Process-Pascal Manual 

 
 

 
 

 
 

 
 
 

 
 

 



502 052 08 
 

Manual Process-Pascal 137/144 

 

 
 

 
 
 

 
 
 

:



502 052 08 
 
 

138/144 Process-Pascal Manual 

 
 

 
 

:

 
 



502 052 08 
 

Manual Process-Pascal 139/144 

 
 
 

 
 
 

 
 

 
 



502 052 08 
 
 

140/144 Process-Pascal Manual 

 
 
 



502 052 08 
 

Manual Process-Pascal 141/144 

:

:

 



502 052 08 
 
 

142/144 Process-Pascal Manual 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 



502 052 08 
 

Manual Process-Pascal 143/144 

 

 
 

 
 

.

 



502 052 08 
 
 

144/144 Process-Pascal Manual 

 

.

 
 

 


