
502 077 02

GB August 2001

PROCES-DATA A/S, Navervej 8, DK-8600 Silkeborg, Denmark, Phone +45 87 200 300, Fax + 45 87 200 301

P-NET CONTROLLER

PD 5000

Manual

502 077 02

II/IV P-NET Controller, PD 5000 Manual

 Copyright 2001 by PROCES-DATA A/S. All rights reserved.

PROCES-DATA A/S reserves the right to make any changes without prior notice.

P-NET, Soft-Wiring and Process-Pascal are registered trademarks of PROCES-DATA A/S.

502 077 02

Manual P-NET Controller, PD 5000 III/IV

Contents Page

1 General information. .. 1

2 Channel overview... 3

3 Getting started.. 5
3.1 BOOT PROM PROGRAM, MASTER RESET... 5
3.2 DOWNLOADING PROGRAMS .. 6
3.3 CMOS RAM.. 6
3.4 PROGRAMMING .. 7

4 Service channel (channel 0) .. 8

5 Communication channel (Channel 1 - 4)... 13

6 Gateway channel (channel 5) .. 19

7 Alarm output (channel 6).. 22

8 OpSystem program channel (channel 8)... 24

9 Process-Pascal program channel (channel 9) .. 34

10 KeyMouse channel (channel $A)... 39

11 Display channel (channel $B) .. 43

12 Fixed softwire numbers ($100 - $113) ... 47

13 SERVICE program. .. 52

14 Construction, Mechanical... 61

15 Specifications. .. 62

16 Approvals.. 63

17 Key Codes for PD 5010 and PD 5015... 64

18 Survey of channels in the PD 5000 controller. .. 65

502 077 02

IV/IV P-NET Controller, PD 5000 Manual

502 077 02

Manual P-NET Controller, PD 5000 1/65

1 General information.

The PD 5000-Series of controllers has been developed as the 2nd generation of P-NET
fieldbus controllers (masters), for use as distributed computing elements within either
highly complex or simple process control systems.

Together with possible additional controllers and PC’s, the PD 5000 is used in
conjunction with other distributed input/output modules (slaves), such as digital,
analogue, flow, and weight nodes, to form a complete control system, which all
communicate via the P-NET fieldbus (EN 50170 Vol. 1).

Since the Controller offers dual P-NET ports together with an RS232 connection, it can
be used to link two P-NET sections (multi-net), or as a gateway to other communications
media, including PC’s, modem’s etc. Although the PD 5000 can be utilised independently
as a powerful processing element, the PD 5010 and PD 5015 enable a controller to be
used as an operator input and display interface. Furthermore, the PD 5020 enables the
controller to be used with a VGA monitor, and a standard PC keyboard and a mouse, as
a Supervisory Control System.

The PD 5000-Series can be ordered in different configurations:

As a PD 5000, a controller without keyboard/display.

As a PD 5020 controller, where the PD 5000 controller is equipped with a video
card for a VGA monitor (640 * 480 pixels). The PD 5020 has connections for a
standard PS/2 mouse and keyboard, 128 k Bytes of EPROM, 1.5 M Byte of FLASH
and 2.5 M Byte of RAM with lithium battery back-up.

As a PD 5010 or PD 5015 controller, where the PD 5000 controller is equipped
with a keyboard/display unit. The PD 5010 controller has a backlit graphics LCD
display with 256 * 64 pixels, and a 48 key sealed membrane click-switch keyboard.
The PD 5015 controller has a backlit graphics LCD display with 240 * 128 pixels,
and a 44 key sealed membrane click-switch keyboard.

SYSTEM DESCRIPTION
Programming
The Controller is programmed in Process-Pascal, which is an extension of standard
Pascal, allowing easy declaration and utilisation of P-NET variables and objects.
Programmes are developed on a standard PC, compiled and downloaded directly via a
PC/P-NET interface card, or via the RS232 interface. Program code can be downloaded
to FLASH memory or battery backed RAM. Prior to delivery, a boot program is loaded
into the EPROM.

502 077 02

2/65 P-NET Controller, PD 5000 Manual

The Operating System in a PD 5000 controller may be located in EPROM or FLASH,
enabling the Operating System to be upgraded without changing the EPROM.

The P-NET channel structure is introduced in the PD 5000 controller, and the first 256
($100) Softwire numbers are organised into standard channels.

The PD 5000 is programmed in Process-Pascal, version 3.1 or higher. The description of
the facilities and the channels and variables in this manual apply to Process-Pascal
version 4.0.

Memory
The PD 5000 has on-board memory consisting of 512 Kbytes of FLASH and 512 Kbytes
of lithium battery backed RAM. In addition, a 128 Kbyte EPROM is provided, which holds
the Operating System. The use of the RAM Extension Board (PD 5090), extends each of
the FLASH and RAM memory capacities to 1 Mbyte.
The lithium battery can be exchanged while the controller is running.

Channels
In keeping with the standardised, object orientated channel structure of other P-NET
devices, the PD 5000 incorporates a structure of 16 Channels, which deal with the
configuration and use of Communication Ports, Program control, and the digital alarm
output. As with all P-NET devices, the Service channel (channel 0) provides the ability,
amongst other facilities, to identify the device and to provide the means to set the node
address.

Communications Interfaces
The Controller has three serial communications interfaces, each configurable for
PNETmode, DatamodeIn, DatamodeOut or DatamodeInOut. Two of these provide
galvanically isolated RS485, multi-master, multi-net interfaces with the P-NET fieldbus,
and run at the standardised speed of 76.8 Kbaud or at 9.6 Kbaud. In non-PNET modes,
the communication channels are used to provide an interface to other communication
protocols using RS485. In non-PNET modes, the Baud rates are adjustable between 1.2
and 76.8 Kbaud.

The third is a standard RS232 interface, which has an adjustable Baud rate of between
1200 and 9600. This communications channel is used to provide an interface to printers,
modems, barcode readers etc., as well as other communications protocols using this
medium.

Digital Channel
The PD 5000 has a built in digital channel, controlling the operation of the “Alarm Output”
available at the rear of the controller.

502 077 02

Manual P-NET Controller, PD 5000 3/65

2 Channel overview

The first 16 channels, channel number 0..F are designated as follows:

Channel number Identifier Channel type

 0 Service Service channel
 1 Port1 Communication channel, port 1, RS485
 2 Port2 Communication channel, port 2, RS485
 3 Port3 Communication channel, port 3, RS232
 4 ResCh4 Reserved
 5 GatewayCh Gateway channel, port 5
 6 AlarmCh Digital I/O channel, alarm output
 7 ResCh7 Reserved for future expansions
 8 OpSysCh Program channel, operating system
 9 PPProgCh Program channel, Process-Pascal
 A KeyMouseCh Keyboard/Mouse channel
 B DisplayCh Display channel
 C ResChC Reserved for future expansion
 D ResChD Reserved for future expansion
 E ResChE Reserved for future expansion
 F ResChF Reserved for future expansion

Variables using Battery RAM memory type are left unchanged following a normal reset or
loss of power, but are cleared after a master reset.

Variables using PROM Read only type memory, are declared as constants in the
Process-Pascal program, and are thus stored along with this program, in EPROM,
FLASH or RAM.

502 077 02

4/65 P-NET Controller, PD 5000 Manual

Register and port overview

The first softwire numbers following the standard channels are designated as follows:

Softwire no. Identifier Type

 $100 InterfaceErrorBuffer BUFFER[10] of InterfaceErrorRecord
 $101 ControllerCode ControllerCodeRec
 $102 ActualPowerdownTime LongInteger
 $103 NodeList Array[1..10] of NodelistElement
 $104 DefaultPen PenInformationType
 $105 PDBoxDefinition Array[0..0] of Word
 $106 ExtTimeDate TimeDateType
 $107..$11F Reserved

The PD 5000 controller is equipped with 5 ports, having the following numbers and
characteristics:

Port no. Characteristic

 1 Standard multimaster P-NET, RS485
 2 Standard multimaster P-NET, RS485
 3 Low speed P-NET, RS232
 4 SPI, virtual port, used for on-board real-time clock (RTC) and EEPROM

5 Gateway, virtual port (refer to gateway channel)

502 077 02

Manual P-NET Controller, PD 5000 5/65

3 Getting started

3.1 Boot PROM program, Master reset
Following delivery, and after a Master reset, the controller will run the Process-Pascal
program that is stored in the boot PROM memory.

Pressing and holding the reset button of the controller for about 10 seconds (or more),
performs a Master reset.

When the controller is powered up after a Master reset, the display will show the
following for a PD 5010:

When using a PD 5015, the display will show the following after a master reset:

When using a PD 5020, a similar display will be shown on the attached VGA screen.

On these screens, the P-NET node address for the controller, and the number of
masters, can be keyed in for port 1 and 2. The program for this is placed in the boot
PROM, and is thus the same in all controllers. However, the keyboard program in the
application program may be different, perhaps with the arrow keys and so on placed
elsewhere than that expected by the boot PROM program. Therefore, a customised the
keyboard overlay MIGHT NOT be directly compatible with the boot PROM program.

After keying in the P-NET node address and the number of masters, a ‘1’ should be
entered in the ‘Init’ field. This will cause the controller to initialise the P-NET system for
the selected port, according to the new values.

While the boot program is running, the controller is ready for download at any time.

502 077 02

6/65 P-NET Controller, PD 5000 Manual

If a program has already been downloaded to the flash memory, this program can be
selected to run instead of the boot program. Enter a ‘1’ in the ‘PROM’ area and perform a
normal reset.

NOTE: It is recommended that the operating system is configured to run in FLASH
memory. The performance of the controller is almost increased by a factor of two, when
the operating system runs in FLASH memory.

When the controller has been reset, it will start the Process-Pascal program in the flash
memory.

3.2 Downloading programs

The operating system may be downloaded to flash memory, using the OpSysCh
channel.

A Process-Pascal program may be downloaded to flash memory or to the CMOS RAM
memory, using the PPProgCh channel.

The Process-Pascal program is downloaded independently of the operating system. This
means that it is possible to update the operating system to a new version, without
changing the boot PROM. Therefore, the program space in flash memory must be
sufficient for both the Process-Pascal program and the operating system. The operating
system occupies approx. 63 K bytes of program memory.
Please refer to the VIGO Users Manual (Ref.No. 502086) for further information about
how to use the Download tool under Windows 95/98 or NT.

3.3 CMOS RAM
The PD 5000 controller holds 512 K bytes of CMOS RAM with battery backup.

The operating system in the controller uses 8 K bytes of the RAM memory, hence 504 K
bytes are free to be used by the user Process-Pascal program. The RAM memory is
used for user data, variables, stack memory for tasks etc. for the Process-Pascal
program, and may also be used for Process-Pascal code. However, normally the
Process-Pascal code will be placed in flash memory.

After a Master reset the contents of the CMOS RAM are lost. The entire RAM is cleared
to zeroes, but after that, the Process-Pascal program in the boot PROM will be running,
using about 1.5 K bytes of RAM. The contents of this area of RAM are thus undefined
following a Master reset.

502 077 02

Manual P-NET Controller, PD 5000 7/65

3.4 Programming
The PD 5000 controller is programmed in Process-Pascal, which is based on standard
PASCAL with some extensions, such as multi-tasking, built-in facilities for accessing
external variables via P-NET, and standard procedures for writing on the display.

The Process-Pascal source code is edited by means of a standard editor. The source
code is then compiled, by means of the Process-Pascal compiler. Depending on the
selected options in the compiler setup, the compilation of the code results in the
generation of a number of new files, of the form >xxx.LST<, >xxx.MAP<, >xxx.SMB<,
>xxx.DEB<, >xxx.ERR< and >xxx.COD< files.

The >xxx.LST< file is a list file, holding the entire program and includes line numbers etc.
The list file also contains any error messages, all of which are indicated with a ”^”.
Finally, the list file holds information on compile time, as well as the data and code size
for the program.
The >xxx.MAP< file contains a list of all the global variables and constants in the
program. This includes the Softwire number, and the type and size of the variables and
constants. The Softwire number of a variable or constant is defined as a logical address,
which can, for instance, be used to access the variable or constant from other controllers
via P-NET. The Process-Pascal compiler generates what is called a Softwire List, which
is a table containing information about all the global variables and constants defined in
the program. The Softwire List is part of the Process-Pascal code. The Softwire number
acts as a pointer to an element in the Softwire List, defining one global simple or complex
variable or constant.
The >xxx.SMB< file is a sub-MIB file, which can be amalgamated with a MIB file in VIGO.
The SMB file contains all information about the variables, tasks, properties for backup,
visibility etc.
The >xxx.DEB< file is a debug file, and contains additional information required by the
Process-Pascal Debugger when debugging a program.
The >xxx.ERR< file is an error file, and contains a list of errors that may have occurred
during compilation.
The >xxx.COD< file holds the Process-Pascal code. The file contents are in binary
format. The Process-Pascal compiler does not compile the source code into machine
code, but into an intermediate code (P-code), which is then interpreted by the
interpreter/operating system in the controller. This dramatically reduces the size of the
COD file.

The Process-Pascal language is described in a separate manual. This manual mainly
contains information specific to the PD 5000 controller.

The Process-Pascal compiler suite is shipped with a number of additional programs and
files, some of which contain basic variable, constant and procedure declarations. The
following paragraphs contain a description of the result of the declarations made in the
System file (PD5000.sys), which forms the Channel structure and other softwire
numbers.

502 077 02

8/65 P-NET Controller, PD 5000 Manual

4 Service channel (channel 0)

Variables in Service channel (channel 0). Channel identifier: Service

SWNo Identifier Memory type Read out Type
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

NumberOfSWNo
DeviceID

Reset
PnetSerialNo

TimeDate
FreeRunTimer

ModuleConfig

Mailfilter
Mailbox
WriteEnable
ChType
CommonError

PROM Read Only
PROM Read Only

BatteryRAM
Special function

BatteryRAM
RAM Read Only

BatteryRAM RPW

BatteryRAM
BatteryRAM
BatteryRAM
PROM Read Only
BatteryRAM

- - - - - - - -

Hex
- - - - - - - -

- - - - - - - -
Decimal

- - - - - - - -

- - - - - - - -
- - - - - - - -
Binary
- - - - - - - -
- - - - - - - -

Integer
Record

Byte
Record

Record
LongInteger

Record

String[9]
Buffer
Boolean
Record
Record

SWNo 0: NumberOfSWNo
This variable holds the highest SWNo in the module. The value for this constant is
calculated and patched by the compiler.

SWNo 1: DeviceID
The purpose of this record is to be able to identify the device. The record includes a
registered manufacturer number, the type number of the module and a string, identifying
the manufacturer.

 Record
 DeviceNumber : Word; (* Offset = 0 *)
 ProgramVersion : Word; (* Offset = 2 *)
 ManufacturerNo : Word; (* Offset = 4 *)
 Manufacturer : String[20]; (* Offset = 6 *)
 end

The field values in the DeviceID record are shown below:

 DeviceNumber = 50xx (xx = 00/10/15/20)
 ProgramVersion = 400 (version 4.00)
 ManufacturerNo = 1
 Manufacturer = PROCES-DATA DK

SWNo 3: Reset
By writing $FF to the Reset variable, the module performs a reset, and ExternalReset in
CommonError SWNo $F is set TRUE.

502 077 02

Manual P-NET Controller, PD 5000 9/65

SWNo 4: PnetSerialNo
This variable is a record having the following structure:

 Record
 PnetNo : Byte; (* Offset = 0 *)
 NoOfMasters : Byte; (* Offset = 1 *)
 SerialNo : String[20]; (* Offset = 2 *)
 end

The serial number is used for service purposes and as a 'key' for setting the controller's
P-NET Node Addresses and the number of masters. The Node Address is set for the
port, through which this variable is accessed.

A special function is included for identifying a module connected to a network containing
many other modules, having the same or unknown node addresses, and to enable a
change of the node address and number of masters via the P-NET.

Setting a new node address and number of masters via the P-NET is performed by
writing the required node address and number of masters together with the serial number
of the module in question, into the PnetSerialNo at node address $7E (calling all
modules). All modules on the P-NET will receive the message, but only the module with
the transmitted serial number will store the P-NET node address and the number of
masters. If the transmitted number of masters is = 0, the value is NOT stored in
NoOfMasters.
An attempt to write data to node address $7E will give no reply. Consequently the calling
master must disable the generation of a transmission error when addressing this node.

In the module, the SerialNo = "XXXXXXXXPD", is set by PROCES-DATA, and cannot be
changed. The eight X`s indicate the serial number, and PD is the initials of PROCES-
DATA.

SWNo 6 TimeDate
This variable holds the data from the real-time clock, in the form of time and date. The
variable has the following structure:

 Record
 Second : Byte; (0 - 59)
 Minute : Byte; (0 - 59)
 Hour : Byte; (0 - 23)
 Day : Byte; (1 - 7 Sunday = 1)
 Date : Byte; (1 - 28/29/30/31)
 Month : Byte; (1 - 12, January = 1)
 Year : Byte; (0 -99 (modulus 100 of the year)
 Code : Byte;
 End

The operating system in the Controller synchronises the DateTime with the real-time
clock chip every time the Second changes to 0. The user should avoid setting the time to
'just before midnight', i.e. 23:59:SS, since in this case, the time will not reset to 00:00:00,
but will revert to the previous time setting. If the time is set to 23:58:SS, the time will reset
to 00:00:00 correctly.

The Code byte is not used.

502 077 02

10/65 P-NET Controller, PD 5000 Manual

SWNo 7: FreeRunTimer
FreeRunTimer is a timer, to which internal events are synchronised. The timer is of type
LongInteger with a 1/256 Second resolution.

SWNo 9: ModuleConfig

 Record
 Enablebit : Bit8; (* Offset = 0 *)
 Functions : Byte; (* Offset = 1 *)
 Ref_A : Byte; (* Offset = 2 *)
 Ref_B : Byte; (* Offset = 3 *)
 end

No functions are related to ModuleConfig in this module.

SWNo B: MailFilter
The MailFilter is used in connection with the MailBox (see below).

 MailFilter : String[9];

The value of the MailFilter can be any combination of characters in a string with a length
of up to 9 characters.

There are no automatic functions implemented in related to the use of MailFilter.

The configuration for the filter functions, the meaning of the messages, the action on all
or specific messages, is totally dependent on the application program, and is not a part of
the P-NET standard.

SWNo C: MailBox
The MailBox variable is a general-purpose message system for the P-NET. Mail in the
system could be an alarm, a message for an operator or an event to be logged on a
printer. In a situation where it is required that the application program performs some
special activity when the MailBox is accessed, the programmer may arrange to generate
an interrupt under these circumstances, in order to start a dedicated task.

The basic message system consists of a mail buffer - the MailBox, and a mail filter - the
MailFilter (see above).

 MailBox : Buffer[10] Of String[89];

SWNo $D: WriteEnable
WriteEnable does not apply to any variables in the PD 5000 Controller.

502 077 02

Manual P-NET Controller, PD 5000 11/65

SWNo E: ChType
Each channel within an interface module is described in an individual ChType variable.
This is a Record, consisting of a unique number for the channel type and a TRUE
boolean value for each of the registers which are represented within a channel. The
register number in a channel corresponds to the index number in the boolean array. In
addition to these fields, various other fields may be found within the record, which are
dependent on the channel type.

 Record
 ChannelType : Word; (* Offset = 0 *)
 Exist : Bit16; (* Offset = 2 *)
 Functions : Bit16; (* Offset = 4 *)
 end

For the service channel, ChType has the following value:

 ChannelType = 1

 Exist =
 15 7 0
 1 1 1 1 1 0 1 0 1 1 0 1 1 0 1 1

 Functions =
 15 7 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SWNo F: CommonError
The CommonError variable holds error status information for all Channels.

This variable is a record of the following type:

 Record
 ChError:
 Record
 His:Array[0..7] of Boolean; (* Offset = 0 *)
 Act:Array[0..7] of Boolean; (* Offset = 2 *)
 End;
 ComHis16:Array [0..15] of Boolean; (* Offset = 4 *)
 ComAct16:Array [0..15] of Boolean; (* Offset = 6 *)
 End

502 077 02

12/65 P-NET Controller, PD 5000 Manual

The 8 bits in ChError.His and ChError.Act have the following meaning:

 7 0

InternalReset (Hardware)
ExternalReset (P-NET)
Not used
Not used
Not used
Not used
Battery low
AnyChannelError (ComHis/Act<>0)

Bit 7 InternalReset is set TRUE if a reset is caused by a power failure, reset

button, by writing $FF to Service.Reset from Process-Pascal, or by any
other internal error causing a reset. Clearing the Service.Reset (softwire
3) clears the bit in .Act.

Bit 6 ExternalReset is set TRUE if a reset is caused by writing $FF to SWNo 3 -

Reset, via P-NET. Clearing the Service.Reset (softwire 3) clears the bit in
.Act.

Bit 1 Battery low is set if the Lithium battery for RAM backup and

RealTimeClock is low. When the battery is low, RAM contents are lost if
power is turned off (the controller will perform a masterreset). Exchange
the battery as soon as possible.

Bit 0 AnyChannelError = 1 means that an error exists in one or more channels.

In the PD 5000 controller, a range of different causes can produce a reset. The reason
for the last reset can be read in the ResetCode. ResetCode is declared in the system file
and can also be accessed via P-NET. The reset code is updated each time the controller
performs a reset, and is NOT cleared by readout. See further details in chapter 12.

502 077 02

Manual P-NET Controller, PD 5000 13/65

5 Communication channel (Channel 1 - 4)

The PD 5000 controller provides three communication ports, and each of them has a
related channel for the communication parameters and exchange of data. Channel 4 is
also defined as a communication channel, although no external physical communication
port is provided. Port 4 is used to access the real-time clock from the operating system.
However, this port must be declared as a communication port, because it must be
initialised by the operating system. The real-time clock can be accessed via the Service
channel.

Variables in a Communication channel Channel identifier: Port_x

SWNo Identifier Memory type Read out Type
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
xA
xB
xC
xD
xE
xF

ActualMode
OutputBuffer
InputBuffer

ChConfig

DefaultMode

ChType
CHError

BatteryRAM
RAMReadWrite
RAMReadWrite

BatteryRAM

PROM ReadOnly

PROM ReadOnly
RAM ReadOnly

- - - - - - - -
- - - - - - - -
- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -
Binary

Record
Buffer
Buffer

Record

Record

Record
Record

SWNo $x0: ActualMode
This variable is a record of the following type:

 Record
 PNETNo : Byte;
 NoOFMasters : Byte;
 Protocol : ProtocolType;
 ElStd : ElStdType;
 BaudRate : LongInteger;
 SumCheck : Boolean; (* False: 1 byte, True: 2 byte*)
 Parity : ParityType;
 Manual : Boolean; (* False: Auto, True:Manual *)
 DisableNIL : Boolean; (* False: NIL inserted, True:NIL not inserted *)
 DataOut : Boolean; (* False: String, True:Block *)
 DataIn : Boolean; (* False: String, True:Block *)
 StopChar : Byte;
 end

502 077 02

14/65 P-NET Controller, PD 5000 Manual

PNETNo defines the P-NET number of the port. All units connected to P-NET must have
a unique P-NET number, a P-NET node address. Port_x.PNETNo indicates the node
address for P-NET on Port_x and must be in the range from 1 to 125.

NoOfMasters defines the number of masters for the port. Since communication ports
can act within a multi-master net, the operating system must know the number of
masters on each net. A master is a unit which can instigate access to P-NET, i.e. it can
start a transmission to another unit and afterwards expects an answer to that
transmission, unlike a slave unit, which can only return answers to a master. Only
controllers can be masters, and only if the controller has the Port_x.PNETNo set to a
value that is less than or equal to Port_x.NoOfMasters. If Port_x.PNETNo is greater than
Port_x.NoOfMasters, the controller can only act as a slave module, in which case it must
not initiate any transmissions. Port_x.NoOfMasters indicates the number of masters on
the net and must be in the range from 1 to 32.

The values of these parameters may also be changed via the Service channel, by
accessing the variable called Service.PnetSerialNo. When this method is used, the
values are always transferred to the EEPROM, regardless of the state of
Service.WriteEnable.

Protocol is declared as an enumeration type and defines the protocol mode for the Port.
Protocol can take the following values:
 Disabled (the communication port is disabled)
 PNETMode (P-NET standard mode)
 DatamodeIn (data-mode input, reads bytes or ASCII characters)
 DatamodeOut (data-mode output, sends bytes or ASCII characters)
 DatamodeInOut (data-mode input+output (full duplex on RS232))

 In datamode, it is only the actual data that is received/transmitted.

ElStd can hold the following values: RS485, IS16, RS232
If the electrical standard of the port is RS232, the normal rules for RS232 handshake
signals are observed. That is, CTS is activated whenever the port is ready to receive
data in DatamodeIn, and deactivated if it is not ready.

BaudRate selects the baud rate for the communication port. If an illegal baud rate is
selected, i.e. the baud rate is not implemented, an error code is generated. Baudrate can
hold the following values:

For port 1 and 2, in P-NET mode:
 76800, 9600

For port 1 and 2, in Datamode:
 76800, 38400, 19200, 9600, 4800, 2400, 1200

For port 3, in P-NET mode or Datamode:
 9600, 4800, 2400, 1200

SumCheck defines whether the P-NET frames use a one byte sum check (Default error
detection) or a two byte sum check (Extended error detection). A one byte sum check is
selected when SumCheck is set to False.

502 077 02

Manual P-NET Controller, PD 5000 15/65

Parity selects the parity for the data on the port. Parity can hold the following values:
NoParity, AddressData.

Manual is used in conjunction with the P-NET CHIP, and defines whether handshake
signals for RS232 in DataMode are controlled automatically or manually (from the
Process-Pascal program). Please refer to the P-NET CHIP manual for further
information.

DisableNIL is used to define whether NIL should be inserted in callback frames as the
last source address, according to the P-NET Standard. The default value for DisableNIL
is False, which means that a NIL is inserted. If DisableNIL is True, then a NIL is NOT
inserted. This facility is necessary to maintain compatibility with older versions of P-NET
devices, eg. PD 3000.

DataOut is used to define whether a port that is set to Protocol datamode out, is in string
or block mode. In string mode, the number of bytes defined in the first byte (the current
length of the string) is sent. The length itself is not transmitted. In block mode, the entire
buffer element from OutputBuffer is sent. String mode is selected when DataOut is False.

DataIn is used to define whether a port that is set to protocol datamode in, is in string or
block mode. In string mode an element is transferred to the InputBuffer when the
character defined in StopChar is received, or until the number of bytes in an element
minus 1 is received. The length of the string is inserted in the first byte of the buffer
element. In block mode, an element is transferred to the InputBuffer when the entire
number of bytes in an element is received.

The Process-Pascal standard procedure InitPort(x) will initialise the port according to the
port configuration given in ActualMode. The ports are also initialised following a reset of
the device. The port configuration following a reset is either the values from ActualMode
or from DefaultMode, depending on the channel configuration (ChConfig.EnableBit[0]).
Furthermore, a port can be initialised as a result of a write operation to
Service.PnetSerialNo with a SerialNo that matches the device. In this case, the port will
be initialised according to the received PNETNo and NoOfMasters.

SWNo $x0: OutputBuffer
If the port is in DatamodeOut or DatamodeInOut, data in this buffer will be sent directly to
the port.

If the port is set to STRING mode (ActualMode.DataOut is False), then the
bufferelements must be of type String. Data is transmitted when there is at least one
element in the buffer. Only the number of bytes corresponding to the actual length of the
string is sent. The string length (1st byte) is NOT sent.

When the port is set to STRING mode, the buffer takes the following form:

 Buffer[10] of String[255]

If the port is set to BLOCK mode (ActualMode.DataOut is to True), then the data is
transmitted when there is at least one element in the buffer. All the bytes contained in
one element are sent.
The OutputBuffer is initialised in the task called InitTask.

502 077 02

16/65 P-NET Controller, PD 5000 Manual

SWNo $x1: InputBuffer
If the port is in DatamodeIn or DatamodeInOut, data received at the port is transferred to
this buffer.

If the port is set to STRING mode (ActualMode.DataIn is False), then the bufferelements
must be of type String. Data is transferred to the buffer when the maximum number of
bytes that the element can hold has been received, or when the stopcharacter
(ActualMode.StopChar) is received. The stopcharacter may, for example, be $0D, the
ASCII code CR. The string length (1st byte) is calculated and inserted - NOT received.

When the port is set to STRING mode, the buffer takes the following form:

 Buffer[10] of String[255]

If the port is set to BLOCK mode (ActualMode.DataIn is True), then the data is
transferred to the buffer, when the maximum number of bytes that one element can hold,
is transferred.

When an element is transferred to the InputBuffer, a Softwire interrupt can be generated.
However, this facility is NOT part of the Communication channel standard.

If the electrical standard of the port is RS232, the normal rules for RS232 handshake
signals are observed. That is, CTS is activated whenever the port is ready to receive
data in DatamodeIn, and deactivated if it is not ready (not configured for DatamodeIn or
InputBuffer full).
The InputBuffer is initialised in the task called InitTask.

SWNo $x9: ChConfig
The run-time configuration for the port is defined in ActualMode. Only the port
configuration following a reset is defined in this variable.

 Record
 Enablebit : Bit8; (* Offset = 0 *)
 Functions : Byte; (* Offset = 1 *)
 Ref_A : Byte; (* Offset = 2 *)
 Ref_B : Byte; (* Offset = 3 *)
 end

Enablebit:
 7 0

Not used
Not used
Not used
Not used
Not used
Not used
Not used
Use ActualMode

502 077 02

Manual P-NET Controller, PD 5000 17/65

Only EnableBit[0] is used , having the following meaning:
 False: Copy DefaultMode to ActualMode after Reset
 True: Don't copy DefaultMode, use ActualMode after Reset

Functions, Ref_A and Ref_B are not used.

SWNo $xC: DefaultMode
DefaultMode is a record of the same type as ActualMode. If ChConfig.EnableBit[0] is
False, then DefaultMode is copied to ActualMode on reset, before the port is initialised.

 SWNo $xE: ChType

 Record
 ChannelType: Word; (* Offset = 0 *)
 Exist: Bit16; (* Offset = 2 *)
 Functions: Bit16; (* Offset = 4 *)
 end

For the communication channels, ChType has the following value:

 ChannelType = $8011

 Exist =
 15 7 0
 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1

 Functions = (for ports 1 and 2)

 15 7 0

0 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1
 DatamodeIn
 DatamodeOut
 PNET_DefaultErrorcheck
 PNET_ExtendedErrorcheck

 RS485
 RS232
 IS16
 Baudrate 76800
 Baudrate 38400
 Baudrate 19200
 Baudrate 9600
 Baudrate 4800
 Baudrate 2400
 Baudrate 1200

502 077 02

18/65 P-NET Controller, PD 5000 Manual

 Functions = (for port 3)

 15 7 0

0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1
 DatamodeIn
 DatamodeOut
 PNET_DefaultErrorcheck
 PNET_ExtendedErrorcheck

 RS485
 RS232
 IS16
 Baudrate 76800
 Baudrate 38400
 Baudrate 19200
 Baudrate 9600
 Baudrate 4800
 Baudrate 2400
 Baudrate 1200

SWNo xF: ChError

 Record
 His:Array[0..7] of Boolean; (* Offset = 0 *)
 Act:Array[0..7] of Boolean; (* Offset = 2 *)
 End

No errors can be reported in the Communication channels.

502 077 02

Manual P-NET Controller, PD 5000 19/65

6 Gateway channel (channel 5)

Variables in Gateway channel. Channel identifier: Gateway

SWNo Identifier Memory type Read out Type
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

GatewayRecord
GatewayInterrupt

ChConfig

ChType
CHError

BatteryRAM
PROM Read only

BatteryRAM

PROM Read Only
RAM Read Only

- - - - - - - -
Decimal

- - - - - - - -

- - - - - - - -
Binary

Record
Byte

Record

Record
Record

The Gateway channel operates on a virtual communication port, port 5. The function of
the Gateway channel is to interconnect P-NET and other communication protocols, or to
activate, for example, time consuming procedures within other controllers.

When a request is made from P-NET (or from the Process-Pascal program in this
controller), to Port 5, the complete P-NET request is transferred to the GatewayRecord,
and an interrupt can be generated. The interrupt invokes a Process-Pascal program,
which performs all communication (or time consuming calculations) through one of the
physical ports 1 to 3, and returns the response to the GatewayRecord. When the
response is returned, the operating system takes over, and returns the answer as if it
was a normal P-NET transmission.

When the request is made via P-NET to the gateway port, the operating system returns
an AnswerComesLater response onto the P-NET. Normally, the calling master waits
approx. 2 seconds for the answer.

Refer to chapter PD GATEWAY in the Process-Pascal manual, version 4, for further
details about the Gateway facility.

502 077 02

20/65 P-NET Controller, PD 5000 Manual

SWNo 50: GatewayRecord

 Record
 NodeAddress : String[25]
 Control_Status : Byte;
 InfoLength : Byte;
 Info : Array[1..63] of Byte;
 Flags : Array[0..7] of Boolean;
 end

The fields NodeAddress, Control_Status, InfoLength and Info, correspond to the same
fields that are described in the P-NET standard. The operating system handles all
NodeAddress conversion. The task of the Process-Pascal program is to return
Control/Status, InfoLength and Info according to the results of the NON P-NET
transmission (or time consuming calculation). After this, the program must set the
GatewayDone bit in the Flags field to True (Flags[7]:= True), to activate the operating
system, which then returns the answer to the P-NET master.

The Flags variable has the following meaning:

7 6 5 4 3 2 1 0

 Gateway access

 InUse
 GatewayDone

Before an interrupt is generated to invoke the Process-Pascal program, InUse is set
TRUE by the operating system. This is to prevent others from using the Gateway
channel until this operation is Done.

When the Process-Pascal program has returned the response to GatewayRecord, it
must set GatewayDone to True. The Process-Pascal program should NEVER write to
InUse. The operating system routines that are activated by the GatewayDone bit will
clear InUse, when the operation is completed.

SWNo 51: GatewayInterrupt
This variable denotes the number of the interrupt, which will invoke the Process-Pascal
program. The number must be declared as a constant in the Process-Pascal program.

SWNo 59: ChConfig
 Record
 Enablebit : Bit8; (* Offset = 0 *)
 Functions : Byte; (* Offset = 1 *)
 Ref_A : Byte; (* Offset = 2 *)
 Ref_B : Byte; (* Offset = 3 *)
 end

The fields in this record are available for the Process-Pascal program that controls the
Gateway communication.

502 077 02

Manual P-NET Controller, PD 5000 21/65

SWNo $5E: ChType

 Record
 ChannelType: Word; (* Offset = 0 *)
 Exist: Bit16; (* Offset = 2 *)
 end

For the Gateway channel, ChType has the following value:

 ChannelType = $8007

 Exist =
 15 7 0
 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1

SWNo 5F: CHError

 Record
 His:Array[0..7] of Boolean; (* Offset = 0 *)
 Act:Array[0..7] of Boolean; (* Offset = 2 *)
 End

No errors can be reported in the Communication channels.

502 077 02

22/65 P-NET Controller, PD 5000 Manual

7 Alarm output (channel 6)

This channel controls the alarm output of the controller. The channel is constructed as a
standard digital I/O channel, but the corresponding functionality is not implemented.
Below is described how to activate the alarm output and how to set the alarm to be a
pulse output.

Variables in digital I/O channel 6. Channel identifier: AlarmOutput

 SWNo Identifier Memory type Read out Type SI
Unit

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

FlagReg
OutTimer
Counter

ChConfig

UserLIArray
Maintenance
ChType
ChError

BatteryRAM
BatteryRAM
BatteryRAM

BatteryRAM

BatteryRAM
BatteryRAM
PROM Read Only
RAM Read Only

Binary
Decimal
Decimal

- - - - - -

- - - - - -
- - - - - -
- - - - - -
Binary

Bit8
Real
Longinteger

Record

Array2LI
Record
Record
Record

 - - -
 s
 - - -

 - - -

 - - -
- - - - -
-
 - - -

SWNo 60: FlagReg
No functions are implemented on the FlagReg variable. The state of the alarm output can
be read in FlagReg[7].
Calling the standard procedure AlarmHornOnOff with a boolean parameter will set the
alarm output according to the boolean value.

SWNo 61: OutTimer [s]
The OutTimer is not used in the Alarm channel.

SWNo 62: Counter
The Counter is used as a timer register by the operating system. The format of this
register corresponds to the FreRunTimer in the Service channel. The alarm output starts
pulsing if UserLiArray[1] is a value other than zero. UserLiArray[1] indicates the OFF time
and UserLiArray[0] indicates the ON time.

SWNo 69: ChConfig
No functions are related to the ChConfig variable.

502 077 02

Manual P-NET Controller, PD 5000 23/65

SWNo 6C: UserLIArray
The alarm output can act as a simple output that can be set ON or OFF. It can also act
as a pulse output.

The pulse output function is selected by setting UserLIArray[1] to a value other than zero.
The output will then be set true for a period equal to the value of UserLIArray[0]. When
the Counter reaches zero, the output will be set false for a period equal to the value of
UserLIArray[1], and so on. The output is reset if the UserLIArray[1] is set to zero.

The ON and OFF periods for the pulse output can be set by using the standard
procedure AlarmPulseOn(OnTime, OffTime)

SWNo 6D: Maintenance
The Maintenance variable is used for service management and maintenance purposes,
and holds the last date of service and an indication of the type of service.

 Record
 Date : Byte; (* Offset = 0 *)
 Month : Byte; (* Offset = 1 *)
 Year : Byte; (* Offset = 2 *)
 Category : Byte; (* Offset = 3 *)
 end

SWNo 6E: ChType

 Record
 ChannelType: Word; (* Offset = 0 *)
 Exist: Bit16; (* Offset = 2 *)
 Functions: Bit16; (* Offset = 4 *)
 FeedBack: Bit16; (* Offset = 6 *)
 end

ChType has the following value:

 ChannelType = 2
 Exist =
 15 7 0
 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1

Functions and Feedback are not used for the alarm output channel.

SWNo 6F: CHError
No errors can be reported in this channel.

502 077 02

24/65 P-NET Controller, PD 5000 Manual

8 OpSystem program channel (channel 8)

The OpSystem program channel provides the ability to download and run the operating
system for the PD 5000 controller without changing the EPROM. The operating system
can be downloaded to FLASH, but can be run in EPROM or FLASH. Selection of the
EPROM or FLASH operating system, is performed from a library.

A number, LibraryIndex, which is found in LibraryControl, provides and index to the
programs in the library. The total number of programs, which can be stored in the library-
memory, is stated in MaxLibraryIndex, which is found in LibraryStatus.

Registers in Program Channel Channel identifier: OpSysCh

SWNo. Identifier Memory Type Read
Out Type

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

ProgramControl
ProgramStatus
ProgramID

SystemPointer

MemoryInfo
IDAndCode
ChConfig
LibraryControl
LibraryStatus
LibraryProgramID
Maintenance
ChType
ChError

BatteryRAM
RAM Read Only
Read Only

PROM Read Only

Read Only
Special function
BatteryRAM
BatteryRAM
RAM Read Only
Read Only
BatteryRAM
PROM Read Only
RAM Read Only

- - - - - - -
- - - - - - -
- - - - - - -

Hex

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

Record
Record
Record

LongInteger

Record
Record
Record
Record
Record
Record
Record
Record
Record

SWNo. 80: ProgramControl
ProgramControl is used to set and change the state of the current program, which has
been selected and invoked via the Program Channel. The selected program number is
inserted and indicated as a part of ProgramControl. Commands can be sent to
ProgramControl to stop, start or reset the program.

 Record
 Command : Byte;
 ProgramToSelect : Word;
 ErrorStatus : Bit32;
 End

502 077 02

Manual P-NET Controller, PD 5000 25/65

Command is used to send a command to the Program Channel to change the state of
the current program. A list of possible commands is given below. The commands and the
corresponding numbers conform to the Request Instructions used by MMS.

 Command Purpose
 38 SelectProgram Selects a program from the library, resulting in

State = Idle.
 (MMS = CreateProgramInvocation)
 39 UnSelectProgram Sets SelectedProgram to 0, resulting in State

changing to Non-selected. (MMS
=DeleteProgramInvication)

 40 Start Starts the selected program (MMS=Start) if the
program is OK.

 41 Stop Stops the selected program. (MMS=Stop)
 42 Resume Continues program execution in the selected

program.
 (MMS=Resume)
 43 Reset Resets the selected program. (MMS=Reset)
 44 Kill Stops the selected program instantly and sets the

state to unrunable. (MMS=Kill)

The Program Channel automatically sets Command to 0 after writing to the variable.
State is updated immediately to one of the corresponding temporary states, Starting,
Stopping, Resuming or Resetting each time a command is sent to the Command
variable. By the change in state, it is possible to read the variable ProgramStatus.State to
check whether the Command was executed successfully or that the operation failed.

ProgramToSelect holds the library index for the program to select or the already selected
program. ProgramToSelect is copied from ChConfig following a module reset or power
up. It can hold the values 1 for EPROM or 2 for FLASH.

ErrorStatus indicates each type of error in a program by means of a Boolean value. An
error may be cleared in this register by writing FALSE to the corresponding error bit. The
ErrorStatus indicates run-time errors in the running operating system.

SWNo. 81: ProgramStatus
ProgramStatus summarises the state and error condition of the selected program. The
library index for the selected program is also indicated.
ProgramStatus is a record of the following type:

 Record
 State : Byte;
 SelectedProgram : Word;
 ErrorStatus : Bit32;
 End

State indicates the current state ofr the selected program, eg. stopping, stopped, running,
idle, non-selected etc. A state diagram and a list of possible states are given below. The
states and the corresponding numbers conform to the states for Program Invocation
Management used by MMS.

502 077 02

26/65 P-NET Controller, PD 5000 Manual

PROGRAM INVOCATION STATE DIAGRAM

+ State transition succeeded - State transition failed.

 State Explanation

502 077 02

Manual P-NET Controller, PD 5000 27/65

 0 Non-selected No program selected. (MMS = Non-selected)
 1 Unrunable The program can not run. (MMS = Unrunable)
 2 Idle The program is stopped and reset. (MMS = Idle)
 3 Running The program is running. (MMS = Running)
 4 Stopped The program is stopped. (MMS = Stopped)

 5 Starting The program is changing state from idle to
running. (MMS = Starting)

 6 Stopping The program is changing state from running to
stopping.

 (MMS = Stopping)
 7 Resuming The program is changing state from stopped to

running.
 (MMS = Resuming)

 8 Resetting The program is changing state from stopped to
idle.

 (MMS = Resetting)

SelectedProgram holds the library index for the selected program. SelectedProgram is 0
if State is Non-selected.
ErrorStatus is identical to ProgramControl.ErrorStatus, but only read access is possible.

SWNo. 82: ProgramID
ProgramID is used to identify the selected program. The record includes a name for the
program, version number, the required version number for the interpreter program and a
name for the Softwarehouse, which created the program. Compile time, compiler version
and actual size for the program is also a part of ProgramID as well as SumCheck (2's
complement word addition without carry) and a code type identifier. The SumCheck
value may be used for check sum calculations when the program is selected, i.e.
following a SelectProgram command (38). CodeType must match CodeType found in
ChType.

 Record
 ProgramName : String[20];
 Version : Word;
 InterpreterVers : Word;
 SoftwareHouse : String[20];
 CompileTime : DateTimeRec;
 CompilerVersion : Word;
 ActualSize : LongInteger;
 SumCheck : Word;
 CodeType : Word;
 NoOfTask : Word;
 RAMNeed : LongInteger;
 Reserved1 : LongInteger;
 Reserved2 : LongInteger;
 End

The values and interpretation for CodeType are specified by the International P-NET
User Organization. This description is available in a separate document, no. 590 003 and
may be issued on request.

502 077 02

28/65 P-NET Controller, PD 5000 Manual

SWNo. 87: MemoryInfo
For each program segment, selected by LibraryControl.LibraryIndex, a corresponding
memory information can be read. The memory information holds the actual size for the
program, the max. size for the program segment and a code for the memory type in
which the program is stored.

 Record
 ActualSize : LongInteger;
 MaxSize : LongInteger;
 MemoryType : Word;
 End

ActualSize includes the size of the program code and the header with the ProgramID.

MaxSize indicates the max size for the program segment and is the max size for a
program to download within the memory area specified by MemoryType.

The values and interpretation for MemoryType are specified by the International P-NET
User Organization. This description is available in a separate document, no. 590 003 and
may be issued on request.

SWNo. 88: IDAndCode
This SoftWire number is used for up- or download of programmes from/to the Program
Channel. When a program is downloaded to the Program Channel, the entire program
and a header with the ProgramID and size indicator, is stored in IDAndCode by means of
a LongStore instruction.

The program and the header with the ProgramID, a size indicator and a code-type
indicator is a variable of the following type:

 IDAndCode = Array[1..ActualSize] Of Byte;

The format for the data stored in the first part of IDAndCode matches exactly the format
for ProgramID, and IDAndCode is interpreted as a record of the following type:

 Record
 ProgramName : String[20];
 Version : Word;
 InterpreterVers : Word;
 SoftwareHouse : String[20];
 CompileTime : DateTimeRec;
 CompilerVersion : Word;
 ActualSize : LongInteger;
 SumCheck : Word;
 CodeType : Word;
 NoOfTask : Word;
 RAMNeed : LongInteger;
 Reserved1 : LongInteger;
 Reserved2 : LongInteger;
 ProgramCode : Array[1..(ActualSize-HeaderSize)] Of Byte;
 End

502 077 02

Manual P-NET Controller, PD 5000 29/65

Before the program can be downloaded to the channel, the download program must
ensure that the necessary memory area is available, the code-type for the program code
is in accordance with the code-type specified for the channel and that the interpreter
program in the operating system is of the right version.

To download or upload a program, the corresponding command must be sent to
LibraryControl.Command register to initiate the sequence. The download program must
wait for LibraryStatus.State = Loading before the download is executed.

ActualSize for a program is given in LibraryProgramID.ActualSize after a complete
download.

SWNo. 89: ChConfig
The specification for how the selected program must operate after a reset or power
failure is held in ChConfig. This configuration includes a number specifying which
program must be invoked after reset.

 Record
 Enablebit : Array[0..7] Of Boolean;
 Functions : Byte;
 Ref_A : Byte;
 Ref_B : Byte;
 End

EnableBit is not used.

Functions is not used.

Ref_A holds the selected program number which must be invoked after module reset or
power up. If Ref_A = 0 it is automatically changed to 1, selecting EPROM.

Ref_B is not used.

SWNo. 8A: LibraryControl
LibraryControl is used to set and change state for a program in the library. The program
in the library is chosen with LibraryIndex. Commands can be sent to LibraryControl to
control a download or upload sequence.

LibraryControl is a record of the following type:
 Record
 Command : Byte;
 LibraryIndex : Word;
 End

502 077 02

30/65 P-NET Controller, PD 5000 Manual

Command is used to send a command to the Program Channel for changing the state of
the program chosen by LibraryIndex. A list of possible commands is given below. The
commands and the corresponding numbers conform to the Request Instructions for
download used by (MMS).

 Command Purpose

 26 InitiateDownloadSequence Prepare for download.
 (MMS = InitiateDownloadSequence)
 28 TerminateDownloadSequence Cancel download and end sequence.

(MMS = TerminateDownloadSequence)
 29 InitiateUploadSequence Prepare for upload (not implemented)
 (MMS = InitiateUploadSequence)

 31 TerminateUploadSequence Cancel upload and end sequence.
 (MMS = TerminateUploadSequence)

 36 DeleteProgram Delete program from the library.
 (MMS = DeleteProgram)

The Program Channel automatically sets Command to 0 after writing to the variable.
State is immediately updated to one of the corresponding temporary states, Complete or
Incomplete each time a command is sent to the Command variable. By the change in
state it is possible to read the variable LibraryStatus.State to check if the Command was
executed successfully or the operation failed.

LibraryIndex chooses one of the programmes in the program library. When a program is
chosen, all data concerning this program may be accessed. The data for the chosen
program may be read at the variables LibraryProgramID, LibraryStatus and MemoryInfo.
Upload and download of the complete program, including the program code, is done via
the IDAndCode variable.

If LibraryIndex is equal to ProgramStatus.SelectedProgram, download is not possible.

The value of LibraryIndex must be 1 or 2.

502 077 02

Manual P-NET Controller, PD 5000 31/65

SWNo. 8B: LibraryStatus
LibraryStatus is used to read the current state for a program in the library. LibraryIndex
indicates the chosen program in the library. MaxLibraryIndex states the max number of
programmes in the library.
LibraryStatus is a record of the following type:

 Record
 State : Byte;
 LibraryIndex : Word;
 MaxLibraryIndex : Word;
 End

State indicates the current state for the program, e.g. loading, ready, nonexistent etc. A
list of possible states is given below. The states and the corresponding numbers conform
exactly to the states for download domain used by The Manufacturing Message
Specification.

 State Explanation

 0 Non-existent No program in this memory type or program
segment. (MMS = Non-existent)

 1 Loading Download in progress.(MMS = Loading)
 2 Ready The program is ready to be selected to run.
 (MMS = Ready)
 3 In-use This program is selected in ProgramControl. The

state change to/from In-use is entirely controlled in
ProgramControl. Download is not allowed.

 (MMS = In-use)
 4 Complete The program is completely downloaded and will

change state to ready. (MMS = Complete)
 5 Incomplete An error has occurred during download and the

program changes state to Non-existent.
 (MMS = Incomplete)
 14 Deleting Deletion in progress, e.g. clearing Flash.
 (MMS = Deleting)

LibraryIndex is identical to LibraryControl.LibraryIndex.

502 077 02

32/65 P-NET Controller, PD 5000 Manual

PROGRAM STATE DIAGRAM

+ State transition succeeded - State transition failed.

MaxLibraryIndex indicates the max. number of programs which can be, or are stored in
the program channel. This value includes the number of programs and available program
segments. The manufacturer determines how the program memory is managed when
downloading and deleting programmes in the program library and assessing what value
MaxLibraryIndex is set to. The hardware in the programmable device and the Program
Invocation Management defines the total number of programs to access and select.

For the PD 5000 operating system, there are 2 types of memory and only 1 program for
each memory type, giving MaxLibraryIndex = 2.

502 077 02

Manual P-NET Controller, PD 5000 33/65

SWNo. 8C: LibraryProgramID
LibraryProgramID corresponds completely with ProgramID, but is used to identify the
program in the program library.

A number, LibraryIndex, which is found in LibraryControl, chooses a program from the
library.

LibraryProgramID is a record of the same type as ProgramID. The description of
ProgramID is found at SWNo. 82.

SWNo 8D: Maintenance
The Maintenance variable is used for service management and maintenance purposes,
and holds the last date of service and an indication of the type of service.

 Record
 Date : Byte; (* Offset = 0 *)
 Month : Byte; (* Offset = 1 *)
 Year : Byte; (* Offset = 2 *)
 Category : Byte; (* Offset = 3 *)
 end

SWNo 8E: ChType

 Record
 ChannelType : Word;
 Exist : Array[0..15] Of Boolean;
 InterpreterVers : Word;
 CodeType : Word;
 End
For the Program Channel, ChType has the following value:

 ChannelType = 11
 Exist =
 15 7 0
 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1

CodeType indicates which kind of program code can be executed in the Program
Channel.

 InterpreterVers = 400 (version 4.00)
 CodeType = 3 (Motorola 68020 machine code)

SWNo 8F: CHError
No errors can be reported in this channel.

502 077 02

34/65 P-NET Controller, PD 5000 Manual

9 Process-Pascal program channel (channel 9)

The Process-Pascal program channel provides the posibility to download and run
Process-Pascal programmes in the PD 5000 controller, without changing the EPROM.
The program can be downloaded to FLASH or RAM, but can be run in EPROM, FLASH
or RAM. Selection of EPROM, FLASH or RAM program is performed from a library.

The programs in the library are indexed by a number, LibraryIndex, which is found in
LibraryControl. The total number of programs that can be stored in the library-memory, is
stated in MaxLibraryIndex, which is found in LibraryStatus.

Registers in Program Channel Channel identifier: PPProgCh

 SWNo. Identifier Memory Type Read Out Type
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

ProgramControl
ProgramStatus
ProgramID
TaskControl
TaskStatus
SystemPointer

MemoryInfo
IDAndCode
ChConfig
LibraryControl
LibraryStatus
LibraryProgramID
Maintenance
ChType
ChError

BatteryRAM
RAM Read Only
Read Only
BatteryRAM
RAM Read Only
Read Only

Read Only
Special function
BatteryRAM
BatteryRAM
RAM Read Only
Read Only
BatteryRAM
PROM Read Only
RAM Read Only

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
Hex

- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -
- - - - - - -

Record
Record
Record
Record
Record
LongInteger

Record
Record
Record
Record
Record
Record
Record
Record
Record

SWNo. 90: ProgramControl
ProgramControl is used to set and change the state of the current program, which has
been selected and invoked, via the Program Channel. The selected program number is
inserted and indicated as a part of ProgramControl. Commands can be sent to
ProgramControl to stop, start or reset the program.

 Record
 Command : Byte;
 ProgramToSelect : Word;
 ErrorStatus : Bit32;
 End

Command – Please refer to the descriptions in the Operating system chapter.

ProgramToSelect holds the library index for the program to select or the already
selected program. ProgramToSelect is copied from ChConfig following a module reset or
power up. It can hold the values 1 for EPROM, 2 for FLASH or 3 for RAM.

No functions are implemented for ErrorStatus.

502 077 02

Manual P-NET Controller, PD 5000 35/65

SWNo. 91: ProgramStatus
ProgramStatus summarises the state and error conditions for the selected program. The
library index for the selected program is also indicated.

 Record
 State : Byte;
 SelectedProgram : Word;
 ErrorStatus : Bit32;
 End

State - Please refer to the descriptions in the Operating system chapter.

SelectedProgram holds the library index for the selected program. SelectedProgram is
0 if State is Non-selected.

ErrorStatus is identical with ProgramControl.ErrorStatus, but only read access is
possible.

SWNo. 92: ProgramID
Please refer to the descriptions in the Operating system chapter.

SWNo. 93: TaskControl
No functions are implemented for TaskControl.

SWNo. 94: TaskStatus
No functions are implemented for TaskStatus.

SWNo. 95: SystemPointer
This variable holds a pointer to system specific data. These system data can be used for
debugging, reading out of kernel data etc. Only the manufacturer of the device and the
creator of e.g. the debugger, will understand the information associated with the
SystemPointer.

SWNo. 97: MemoryInfo
For each program segment, selected by LibraryControl.LibraryIndex, corresponding
memory information can be read. The memory information holds the actual size for the
program, the max. size for the program segment and a code for the memory type in
which the program is stored.

MemoryInfo is a record of the following type:
 Record
 ActualSize : LongInteger;
 MaxSize : LongInteger;
 MemoryType : Word;
 End

ActualSize includes the size of the program code and the header with the ProgramID.

502 077 02

36/65 P-NET Controller, PD 5000 Manual

MaxSize indicates the max. size for the program segment, and is the max. size for a
program to download within the memory area specified by MemoryType.

The values for and interpretation of MemoryType, are specified by the International
P-NET User Organization. This description is available in a separate document, No. 590
003, and will be issued on request.

SWNo. 98: IDAndCode
Please refer to the descriptions in the Operating system chapter.

Size of the SWTable is given in the first 4 bytes in ProgramCode.

SWNo. 99: ChConfig
The specification of how the selected program should operate after a reset or power
failure, is held in ChConfig. This configuration includes a number specifying which
program must be invoked after reset.

 Record
 Enablebit : Array[0..7] Of Boolean;
 Functions : Byte;
 Ref_A : Byte;
 Ref_B : Byte;
 End

Enablebit[0] indicates how the selected program should operate after a power failure or
module reset.

Enablebit[0] = TRUE indicates that the selected program must perform an
autostart, resulting in State = Running.

Enablebit[0] = FALSE indicates that the selected program must not autostart,
but must go to State = Idle.

The Program Invocation Management in the Program Channel must send Commands to
the selected program after a module reset, to change State to that specified by
Enablebit[0] (Idle or Running).

Functions is not used.

Ref_A holds the selected program number to be invoked following a module reset or
power up. If Ref_A = 0, 1 is automatically inserted, selecting EPROM.

Ref_B is not used.

SWNo. 9A: LibraryControl
Please refer to the descriptions in the Operating system chapter.

The value of LibraryIndex must be 1, 2 or 3.

502 077 02

Manual P-NET Controller, PD 5000 37/65

SWNo. 9B: LibraryStatus
LibraryStatus is used to read the current state of a program in the library. LibraryIndex
indicates the chosen program in the library. MaxLibraryIndex indicates the max number
of programmes in the library.

LibraryStatus is a record of the following type:
 Record
 State : Byte;
 LibraryIndex : Word;
 MaxLibraryIndex : Word;
 End

State - Please refer to the descriptions in the Operating system chapter.

MaxLibraryIndex indicates the max. number of programmes which are, or can be stored
in the program channel. This value includes the number of programs and available
program segments. The manufacturer determines how the program memory is managed
when downloading and deleting programmes in the program library and monitoring what
value MaxLibraryIndex is set to. The hardware in the programmable device and the
Program Invocation Management defines the total number of programs for access and
selection.

In the PD 5000 controller, there are 3 types of memory and only 1 program for each
memory type, giving MaxLibraryIndex = 3.

SWNo. 9C: LibraryProgramID
LibraryProgramID corresponds completely with ProgramID, but is used to identify the
program in the program library.

A number, LibraryIndex, which is found in LibraryControl, selects a program from the
library.

LibraryProgramID is a record of the same type as ProgramID. Please refer to the
Operating system chapter for a description of ProgramID.

SWNo 9D: Maintenance

The Maintenance variable is used for service management and maintenance purposes,
and holds the last date of service and an indication of the type of service.

 Record
 Date : Byte; (* Offset = 0 *)
 Month : Byte; (* Offset = 1 *)
 Year : Byte; (* Offset = 2 *)
 Category : Byte; (* Offset = 3 *)
 end

502 077 02

38/65 P-NET Controller, PD 5000 Manual

SWNo 9E: ChType

 Record
 ChannelType : Word;
 Exist : Array[0..15] Of Boolean;
 InterpreterVers : Word;
 CodeType : Word;
 End

For the Program Channel, ChType has the following value:

 ChannelType = 11

 Exist =
 15 7 0
 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

CodeType indicates the kind of program code that can be executed in the Program
Channel.

 InterpreterVers = 400 (version 4.00)
 CodeType = 4 (Process-Pascal)

SWNo 9F: CHError
No errors can be reported in this channel.

502 077 02

Manual P-NET Controller, PD 5000 39/65

10 KeyMouse channel (channel $A)

Variables in KeyMouse channel Channel identifier: KeyMouse

 SWNo Identifier Memory type Read out Type
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

KeyboardBuffer
StatusIndicator
KeyConvertTable
Typematic

MouseBuffer
MouseSetup

ChConfig

InputStringPtr
InputField

ChType
ChError

BatteryRAM
BatteryRAM
BatteryRAM
BatteryRAM

BatteryRAM
BatteryRAM

BatteryRAM

BatteryRAM
BatteryRAM

PROM Read Only
RAM Read Only

- - - - - -
- - - - - -
- - - - - -
- - - - - -

- - - - - -
- - - - - -

- - - - - -

- - - - - -
- - - - - -

- - - - - -
Binary

Buffer
Bit8
Array
Record

Buffer
Record

Record

Pointer
Record

Record
Record

This channel is used for keyboard and mouse control.

SWNo A0: KeyboardBuffer

 Buffer[10] of Byte

Data received from the keyboard is transferred to the buffer directly, or through
KeyConvertTable. If interrupt on "External Store" is connected to this variable, an
interrupt is generated when data is transferred to the buffer.

Please refer to chapter 17 to get a survey of the key codes for PD 5010 and PD 5015.

SWNo A1: StatusIndicator

7 6 5 4 3 2 1 0

 Mouse connected
 Keyboard connected

The StatusIndicator can be used to check whether a keyboard or a mouse is connected
to a PD 5020 VGA Controller.

502 077 02

40/65 P-NET Controller, PD 5000 Manual

SWNo A2: KeyConvertTable

 Array[1..128] of
 Record
 Normal : Array[1..2] of Byte;
 Shift : Array[1..2] of Byte;
 CapsLock : Array[1..2] of Byte;
 NumLock : Array[1..2] of Byte;
 End

Example of KeyConvertTable:

ScanCode Normal Meaning Shift Meaning CapsLock Meaning NumLock Meaning

 1 00 43 F9 00 5C Shift-F9 00 43 F9 00 43 F9
. . .
 22 31 00 1 21 00 ! 31 00 1 31 00 1
. . .
 28 61 00 a 41 00 A 61 00 a 61 00 a
. . .
 41 20 00 Space 20 00 Space 20 00 Space 20 00 Space
. . .
 105 00 4F End 31 00 1 00 4F End 31 00 1
. . .

If the first code in the KeyConvertTable entry is = 00, both codes are transferred to the
KeyboardBuffer (only 1 interrupt is generated). If the first code is <> 00, only the first
code is transferred to the buffer.

SWNo A3: Typematic
No functions are implemented for TypeMatic.

SWNo A5: MouseBuffer

 Buffer[10] of
 Record
 x : Integer;
 y : Integer;
 State : Bit8;
 End

Data received from the mouse is transferred to the buffer. If interrupt on "External Store"
is connected to this variable, an interrupt is generated when data is transferred to the
buffer.

State:

7 6 5 4 3 2 1 0
 Left button pressed
 Right button pressed
 Middle button pressed

502 077 02

Manual P-NET Controller, PD 5000 41/65

SWNo A6: MouseSetup
No functions are implemented for MouseSetup.

SWNo A9: ChConfig

 Record
 Enablebit : Bit8; (* Offset = 0 *)
 Functions : Byte; (* Offset = 1 *)
 Ref_A : Byte; (* Offset = 2 *)
 Ref_B : Byte; (* Offset = 3 *)
 end

where each field has the following usage:

Enablebit: Not used.

Ref_A : UpdateChar, used when the Inputstring is placed in updatefield.

Ref_B : Not used.

SWNo AB: InputStringPtr
A pointer to the input string, from where data are fetched during PerformUpdate.

SWNo AC: InputField

 Record
 InputX : Integer;
 InputY : Integer;
 InputLength : Byte;
 end

InputX and InputY defines the position on the screen for the InputString.

InputLength determines the length of the InputString and is used by the keyboard
program.

SWNo AE: ChType

 Record
 ChannelType: Word; (* Offset = 0 *)
 Exist: Bit16; (* Offset = 2 *)
 Functions: Bit16; (* Offset = 4 *)
 end

ChType has the following value:

 ChannelType = $8005

502 077 02

42/65 P-NET Controller, PD 5000 Manual

 Exist =
 15 7 0
 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1

 Functions =
 15 7 0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

PS/2 mouse supported
PS/2 keyboard supp.

SWNo AF: CHError
No errors can be reported in this channel.

502 077 02

Manual P-NET Controller, PD 5000 43/65

11 Display channel (channel $B)

Variables in Display channel Channel identifier: Display

 SWNo Identifier Memory type Read out Type

B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

DumpData
DumpStatus
ScreenInfo
CursorHide
VideoControl
ColorTable

ChConfig

ChType
ChError

BatteryRAM
BatteryRAM
BatteryRAM
BatteryRAM
BatteryRAM
BatteryRAM

BatteryRAM RPW

PROM Read Only
RAM Read Only

- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -
- - - - - -

- - - - - -

- - - - - -
Binary

Record
Bit8
Record
Array
Record
Array

Record

Record
Record

This channel is used for display control, and for display dump (readout of display
contents from P-NET).

SWNo B0: DumpData
This variable is a dummy variable that is used for bitmap data from the display, during
display dump.

SWNo B1: DumpStatus
This variable is a dummy variable that is used for bitmap data from the display, during
display dump.

SWNo B2: ScreenInfo
System information to set up the screen and cursor, is held in this variable.

 Record
 Video : BitMapPtrr;
 Width : Integer;
 Height : Integer;
 CursorX : Integer;
 CursorY : Integer;
 CursorForeground : Byte;
 CursorBackground : Byte;
 Cursor : BitmapPtr;
 ScreenX : Integer;
 ScreenY : Integer;
 ScreenWidth : Integer;
 ScreenHeight : Integer;
 End

502 077 02

44/65 P-NET Controller, PD 5000 Manual

Video holds a pointer to the screen (the video RAM). It is not possible to access the
display directly via this pointer. The pointer is set up by the standard procedure
SetScreen.

Width and Height defines the width and height of the screen, in pixels. The values are set
up by the standard procedure SetVideo(x,y).

CursorX, CursorY defines the actual position of the cursor. It is used for reading only (the
cursor cannot be moved by writing to these values). The cursor position is changed by
means of the standard procedures CursorToAbs(x,y), MoveCursor(x,y) or CursorTo(x,y).
Refer to Process-Pascal manual for further details.

CursorForeground, CursorBackground defines the foreground and background colours
of the cursor. The colours can be accessed directly, or set by the standard procedure
SetCursorColors. If the colours are accessed directly, the cursor will not change colour
until it is moved.

Cursor holds a pointer to the cursor bitmap. The value of this variable is for internal use
only. The pointer is set up by means of the standard procedure SetCursor.

ScreenX and ScreenY are used in controllers with multiple windows. The standard
procedure SetWindow(x,y) will insert x in ScreenX and y in ScreenY. Refer to Process-
Pascal manual for further details.

ScreenWidth, ScreenHeight holds the physical width and height of the screen in pixels.

SWNo B4: VideoControl

 Record
 Code : Bit8;
 Light : Byte;
 Contrast : Byte;
 End

Code has the following meaning:

7 6 5 4 3 2 1 0
 0: Light OFF, 1: Light ON
 0: Display OFF, 1: Display ON
 0: Normal, 1: Zoom horizontal
 0: Normal, 1: Zoom vertical

Light This variable holds the light strength, if adjustable under software control,

which is the case for PD 5010 / PD 5015.

Contrast This variable holds the contrast strength, if adjustable under software control,

which is the case for PD 5010 / PD 5015.

The VideoControl variable can be accessed via the standard procedures DisplayOnOff,
LightOnOff, ContrastControl and LightControl.

502 077 02

Manual P-NET Controller, PD 5000 45/65

SWNo B5: ColorTable
No functions are implemented for this variable.

SWNo B9: ChConfig

The ChConfig variable is a record of the following type:

 Record
 Enablebit : Bit8; (* Offset = 0 *)
 Functions : Byte; (* Offset = 1 *)
 Ref_A : Byte; (* Offset = 2 *)
 Ref_B : Byte; (* Offset = 3 *)
 end

No functions are related to ChConfig.

SWNo BE: ChType

 Record
 ChannelType : Word; (* Offset = 0 *)
 Exist : Bit16; (* Offset = 2 *)
 Functions : Bit16; (* Offset = 4 *)
 end

ChType has the following value:

ChannelType = $8006

 Exist =

 15 7 0
 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1

502 077 02

46/65 P-NET Controller, PD 5000 Manual

 Functions (for PD 5010/15) =

 15 7 0

0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0
 VGA colour screen

supported
 Black/white screen

supported
 LCD screen supported
 ScreenDump facility

supported
 Direct read access to

screen
 Direct write access to

screen
 Zoom supported
 Light on/off supported
 Display on/off supported
 Light adjust supported
 Contrast adjust supported

 Functions (for PD 5020) =

 15 7 0

0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
 VGA colour screen

supported
 Black/white screen

supported
 LCD screen supported
 ScreenDump facility

supported
 Direct read access to

screen
 Direct write access to

screen
 Zoom supported
 Light on/off supported
 Display on/off supported
 Light adjust supported
 Contrast adjust supported

SWNo BF: CHError
No errors can be reported in this channel.

502 077 02

Manual P-NET Controller, PD 5000 47/65

12 Fixed softwire numbers ($100 - $113)

Softwire $100 - InterfaceErrorBuffer

The InterfaceErrorBuffer is a buffer where the element type is a record having the
following structure:
 Record
 SWNo : Word;
 VARAddr : LongInteger;
 VAROffset : LongInteger;
 ErrorCode : Word;
 End

 InterfaceErrorBuffer: Buffer[10] of InterfaceErrorRecord

The buffer can hold of a number of records with information on recently detected P-NET
errors. An element is transferred to the InterfaceErrorBuffer by the operating system,
when a P-NET error occurs. By means of the statement Enable(Error) in Process-Pascal,
the user defines what type of P-NET errors will result in a transfer of an element to the
InterfaceErrorBuffer. Refer to the Process-Pascal manual for further information on the
Enable(Error) statement.

Since the variable InterfaceErrorBuffer is of type buffer, a complete element must be
read, and it is not possible to just read a single field in a buffer element. A new variable of
the same type as an element in the buffer should be declared. When an error occurs, the
entire element can be transferred from the InterfaceErrorBuffer to the variable of type
InterfaceErrorRecord. Now the fields of the variable can be accessed separately.

NOTE: When activating the automatic error detecting system and a report element is
stored in the buffer, relevant program must be written to read this report element from the
InterfaceErrorBuffer, to prevent the buffer from running full.
It is possible to connect a SoftwireInterruptTask to the InterfaceErrorBuffer. The
corresponding SoftwireInterruptTask task will then automatically be activated each time
an element is transferred to the buffer by the operating system.

The InterfaceErrorRecord is defined to include the following fields:

SWNo holds the Softwire number for the variable, within the declared interface module
that caused the error. That is, the Softwire number of the external variable in the Softwire
table in the PD 5000 controller.

The standard function VARNAME(SOFTWIRENo) returns the string constant after
NAME for the module variable, if it is declared. Refer to chapter VARIABLE DECLA-
RATION in the Process-Pascal manual.

502 077 02

48/65 P-NET Controller, PD 5000 Manual

VARAddr holds the logical address of the variable within the interface module. For
simple interface modules (I/O modules), the contents of VARAddr is a number, which
combines the channel number and the register number of the variable. If the module is a
controller, VARAddr holds the Softwire number of the variable in the other controller that
caused the interface error.

VAROffset holds an offset for the variable (in the interface module) that caused the
interface error. The field variable VAROffset can be used to locate a variable field in a
complex variable.

ErrorCode holds the error code relating to the interface error. The contents of the
ErrorCode reflects the control/status field from the P-NET frame. The ErrorCode field is
declared as a word, where each bit has the following meaning:

The format for the error code in PD 5000 is different from the error code that is used in
PD 4000. A procedure, called ConvertErrorCode that is able to convert from the PD 5000
error code format to the PD 4000 error code format is available in the PD5000SP.INC
file.

Softwire $101, ControllerCode
ControllerCode is a record of the following type:

 Record
 MaxPowerdown : LongInteger;
 CountryCode : Boolean;
 End

MaxPowerdown holds a time in seconds. If the duration of a power failure is shorter
than MaxPowerdown, the controller continues program execution from where it was
before the power failure. Otherwise the program restarts, like after a RESET.

CountryCode is used to select the decimal separator:

 FALSE : Separator = comma (,)
 TRUE : Separator = point (.)

15 13 012345678

TransmissionError
HisError
ActError
BufferError
0
0
0
0

Control / Status according to the P-NET Standard

914 11

502 077 02

Manual P-NET Controller, PD 5000 49/65

Softwire $102, ActualPowerdownTime

 ActualPowerdownTime: LongInteger;

This variable indicates for how long the controller was without power the last time it was
powered down. If a Softwire interrupt task is connected to this variable, with interrupt
condition ”InternStore”, the interrupt task will be activated after each power down. Please
note that if the power failure lasted less than one second, ActualPowerDownTime will be
zero, but if an interrupt is connected, this interrupt will still be activated.

Softwire $103 - NodeList
Nodelist is defined as an array of records, where the record is defined as follows:

 Record
 Code : Byte;
 StdChannel : Boolean;
 DeviceType : Integer;
 NodeAddr : String[10];
 End;

 Nodelist: Array[1..10] of NodelistElement;

Nodelist is used for accessing variables, not directly declared in Process-Pascal. This is
performed by means of the PointerToNode statement. How this is accomplished is
described in the Process-Pascal manual.

Accessing variables through Nodelist is only possible from within the Process-Pascal
program in this controller (there are no gateway functions related to the Nodelist).

The number of elements in Nodelist, and the length of the NodeAddr (max 25), is defined
individually in the Process-Pascal program.

The Code field indicates the capabilities for the node to access, and is defined in the
following way:

7 6 5 4 3 2 1 0
 0: Offset legal, 1: Offset illegal
 0: Bit addressing legal, 1: Bit addressing illegal
 0: IEEE Real format, 1: OldReal
 0: 2 byte addressing, 1: 4 byte addressing
 0: Softwire addressing, 1: Physical addressing
 0: Simple NodeAddr, 1: Extended/Complex NodeAddr

 0: Use offset in Long, 1: No offset in Long

502 077 02

50/65 P-NET Controller, PD 5000 Manual

Softwire $104, DefaultPen
Writing on the display always requires a pen. If no pen is mentioned in the statement for
writing - e.g. Display(), DefaultPen is used as default. If a local DefaultPen is declared, it
will be used - otherwise the globally declared DefaultPen will be used. The pen holds
information on charactergenerator, colours, window number, pen position etc.

A Pen is declared as a record of the following type:
 Record
 CharGen : CharacterGeneratorPtr;
 ForeGround : Byte;
 BackGround : Byte;
 RefX : Integer;
 RefY : Integer;
 AbsX : Integer;
 AbsY : Integer;
 Status : Array[0..7] of Boolean;
 WindowNo : Byte;
 AltFore : Byte;
 AltBack : Byte;
 End

Status is interpreted in the following way:

7 6 5 4 3 2 1 0

 0: Use Foreground and BackGround, 1: Use AltFore and AltBack
 Partly hidden
 Hidden (completely or partly)

The Status bits are mainly used in connection with the PD 5020 VGA Controller.

Status[1] and Status[2] may be used to reduce the time taken to update the display.
Status[1] is set TRUE by the operating system, if the item to write on the display is partly
hidden under another window. Status[2] is set TRUE if the item is either completely or
partly hidden:

Status[2,1]: 0,0 : Not hidden
 0,1 : Illegal
 1,0 : Completely hidden
 1,1 : Partly hidden

The flags must be cleared by Process-Pascal. They are never cleared by the operating
system.

Softwire $105 - PDBoxDefinition

 PDBoxDefinition = Array[0..0] of Word

This is an array of constants, generated automatically by the compiler. The constants in
the array are the Softwire numbers of all global variables that are declared to be external
in the Process-Pascal program within the controller.

502 077 02

Manual P-NET Controller, PD 5000 51/65

PDBoxDefinition can for example be used to initialise the modules, in which the external
variables are located. Refer to the Process-Pascal manual, or the description (in this
manual) about initialising modules (the INITBOX.INC file).

Softwire $106 - ExtTimeDate
This is the real-time clock. The real-time clock is of the same type as the TimeDate
variable that is found on the Service channel. Please refer to the Service channel for
further information.

Softwire $113 - ResetCode

ResetCode is a byte, holding a code that indicates the reason for the last reset.

The ResetCode is defined as follows:

$00 : STORE $FF to SW $03
$01 : Master Reset
$02 : Reset button pressed
$03 : Watchdog
$04 : Power fail
$05 : Instruction Error
$06 : Address error
$07 : Privilege violation
$08 : Illegal address (Bus error)

502 077 02

52/65 P-NET Controller, PD 5000 Manual

13 SERVICE program.

The SERVICE program is an engineering package for PD 5010, which enables you to
monitor and change all variables in the interface modules specified in YOUR Process-
Pascal program. All modules produced by PROCES-DATA and modules utilising the
standardised general purpose channel types can be accessed.

Furthermore, it is used for automatic checking and configuration of all declared interface
modules, and a MONITOR display is also implemented. The SERVICE program is a very
helpful tool during the installation/test phase, and in small application programs it can
significantly reduce your own programming effort in connection with configuration and
other adjustments.

The "skeleton" of how to implement these facilities in your own Process-Pascal program,
is shown in the file SERCON.PP, which can be found in the EXAMPLES folder within the
Process-Pascal suite of programs.

The entire source code for the SERVICE program is found in the INC folder.

Calling the procedure StandardMenu (screen layout is found in the file MENU.INC)
activates the SERVICE program. From this menu, three different tools can be selected:

Each of the tools is described in the following pages.

The SERVICE program operates with 5 function keys, all specified in the file
SERVKEYS.INC:

 Key no. $19 is "previous page", and selects the previous page for a channel.
 Key no. $1A is "next page", and selects the next page for a channel.
 Key no. $1B is "previous channel", and selects the previous channel in a module.
 Key no. $1C is "next channel", and selects the next channel in a module.
 Key no. $30 is "new display", and exits the SERVICE program.

The key No. for these function keys can be changed to suit your own application.

502 077 02

Manual P-NET Controller, PD 5000 53/65

SERVICE DISPLAY

The Service display can operate on and display information for:

 1 INTERNAL simple variables,
 2 CHANNELS in Interface modules

1 INTERNAL simple variables, which are found via a SoftWire number, are selected

by entering the SWNo in line 2. By entering a legal SWNo, information is displayed
for the variable found.

 Only global variables, which are specified in your Process-Pascal program, can be

accessed. Refer to the MAP file, for a complete list of global variables.

 The read-out Code for the value can be changed. The format corresponds to the

format specified for the standard procedures Display/Update in Process-Pascal.

 The variables can be changed in the field for Value.

2 CHANNELS in Interface modules, which can be found either via a SoftWire

number, a NAME or a channel number.

 The SWNo is entered in line 2. By entering a SWNo for a module, information is

displayed for the service channel. By entering a SWNo for a channel declared as
an indirect variable, information is displayed for the selected channel.

 The NAME corresponds to the NAME assignment in the variable declaration. Only

variables declared with NAME can be found this way. When entering a NAME, or a
part of a NAME, all NAMEs in the controller are searched and compared with the
InputString.

502 077 02

54/65 P-NET Controller, PD 5000 Manual

The search is performed backwards, which means that the search string
(InputString), must be equal to the last part of the NAME. When the search string
is found, information is displayed for the found channel.

 The search string for NAME is entered in line 3 after "Variable name:".
 (When you create a program and specify the NAMEs, it's recommended to append

a unique numerical identifier to the NAME, to make it easy to enter the search
string via the numeric keys, e.g. 200-45.2, for location, module No. and channel
No., or module type e.g. 3230).

 When an interface module has already been found already, by SWNo or by NAME,

a Channel number can be entered in line 4, to select a new channel within the
same module.

 The function keys "previous channel" and "next channel" can also be used to
select a new channel within the same module.

 The complete information for a channel is displayed on several pages. The function

keys "previous page" and "next page" can be used to select a new page for the
same channel.

 Page 2 for a Service channel is shown below:

 Refer to the manuals for the different modules, to get more detailed information

about the individual variables and their function.

 The bottom line of all channel displays is reserved to display transmission errors for

the module.

CHANGING THE P-NET ADDRESS.
 Line 2 displays the P-NET address, which is defined in the Process-Pascal

program for the module. If no access is obtained to the module, the P-NET address
can be changed, to set the correct address. If the P-NET address is changed, there
is no check of the module type (see below). This feature enables you to access
additional modules, which were not declared in the program.

 If a different module type is found than that specified in the variable declaration in

the Process-Pascal program, a new display is shown, and you must confirm or
cancel the selection.

502 077 02

Manual P-NET Controller, PD 5000 55/65

 If you enter the actual module type (3120 in the example above), normal access is

obtained to this module and all the channels in the actual module can be scanned,
but the "Variable name" relates to the originally entered NAME or SWNo.

 The program can be exited at any time, by pressing the key "new display", and it

then returns to "Standard menu".

 Only a few of the channel types are shown in this description, but the structure and

the access possibilities are identical for all the channel types.

 The 4 pages below survey a Digital I/O channel:

502 077 02

56/65 P-NET Controller, PD 5000 Manual

 The 3 pages below survey an Analogue input channel:

502 077 02

Manual P-NET Controller, PD 5000 57/65

Initialise interface modules

The second choice on the standard menu, selects a tool to check and initialise all the
interface modules that are declared in your Process-Pascal program.

This tool is also used when an interface module is replaced.

CHECK MODULES.

 In the first step, the P-NET network is scanned for to search for all the modules,

which are declared in the Process-Pascal program.

 When a module is found, a check is made that the module type corresponds with

that declared in the program.

 If a wrong module type is found, a new display is shown, and you are asked to skip

initialising or to change the module and try again.

 If the module not is found, a new display is shown, and you are asked to:

1 Skip initialising the module, or change the P-NET address on the
motherboard to the expected address and try again (PD 1000 series
modules),

 or
 2 Enter the SerialNo for the module (the serial number is printed on the

module for PD 3000 series modules).

 When all modules have been found or skipped, the program continues with the

next step, to initialise modules.

 The program can be exited at any time by pressing the key "new display", and it

then returns to "Standard menu".

502 077 02

58/65 P-NET Controller, PD 5000 Manual

INITIALISE MODULES.
 In the second step, all the configuration procedures that are defined in the variable

declaration in your program after the CONFIG statement, are called and executed.

 Each of the configuration procedures compares the value of the variable with the

configuration value. If the value of the variable is not the same as the configuration
value, the variable is set to the new value and it is checked again to confirm that
the variable now has the correct value.

 If the variable cannot be set to the configuration value, a new display is shown,

depending on the module type, and you are asked to:
 1 Skip initialising the module or "Set program enable switch ON" and try

again (PD 1000 series modules),
 or
 2 A message is shown: "MODULE CONFIGURATION ERROR !!!" and

you can skip initialising the module or try again (PD 3000 series
modules).

 When all the defined variables are configured or skipped, the program displays a

status for the configuration (number of errors on modules and channels).

 The program can be exited at any time by pressing the key "new display", and it

then returns to "Standard menu".

 The following procedures are found in the file CONFIG.INC and are available for

defining a CONFIG statement:

 SetLongInteger(VAR CodeReg:LONGINTEGER; ConfigValue:LONGINTEGER);
 This procedure is used to configure the Code9 register in non-standardised

channels.

 SetReal(VAR RealReg:REAL; ConfigValue:REAL);
 This procedure is used to configure a real value, e.g. SetPoint or HighLevel.

 SetInteger(VAR IntegerReg:Integer; ConfigValue:Integer);

 SetByte(VAR ByteReg: BYTE; ConfigValue:BYTE);
 This procedure is used to configure any byte value, e.g. Functions in a

ChConfig register.

 SetBoolean(VAR BooleanReg: BOOLEAN; ConfigValue:BOOLEAN);
 This procedure is used to configure any boolean value, e.g. a single

EnableBit in a ChConfig register.

502 077 02

Manual P-NET Controller, PD 5000 59/65

 SetBit8(VAR Bit8Reg:Bit8; Bit8Byte:BYTE);
 This procedure is used to configure any Bit8 register, e.g. every EnableBit in

a ChConfig register. The boolean array occupies a byte and the configuration
value for the boolean array must be represented in a byte, e.g. $80 sets bit 7
and clears all the other booleans.

 PT100(VAR TempChannel:ChAnalogIn);
 This procedure is only valid for PD 1611 and PD 1652.

 Standard_PT100(VAR TempChannel:AnalogInCh);
 This procedure is valid for all standardised analogue input channels.
 The procedure selects the input type as "Pt100" with NO FILTER, clears all

EnableBits and Zeropoint is set to 0.

 DigitalInput(VAR InChannel:ChDigitalIO);
 This procedure is only valid for PD3100 and PD3150. The Procedure sets

the channel to "Input Only".

 DigitalOutput(VAR OutChannel:ChDigitalIO);
 This procedure is only valid for PD3100 and PD3150. The Procedure sets

the channel to "Output".

 Std_DigitalOutput(VAR OutChannel:DigitalCh);
 This procedure is valid for all standard digital I/O channels. The Procedure

sets the channel to "Output".

 OutputWithFeedBack(VAR OutputChannel:ChDigitalIO; ChannelNumberA,
 ChannelNumberB:BYTE; PresetTime :REAL);
 This procedure is only valid for PD3100.

502 077 02

60/65 P-NET Controller, PD 5000 Manual

Monitor display

The third choice on the standard menu selects a 6 line MONITOR display, including help
pages. The facilities in this MONITOR are similar to the facilities in the VBMON program
for a PC. You can access all global variables on the entire P-NET network.

Please observe that the MONITOR program uses the first 6 elements from the NodeList.

Nod denotes an element from the NodeList. Dev is the device type. Cod is automatically
set when a known device type is selected (Cod specifies the access mode: 2 or byte
addr, offset etc.). SW selects the SoftWire no.. Off is an offset. Typ specifies the variable
type to access. Fmt specifies the readout mode for the variable. Er is the error code.
Data is the actual loaded data.

Nodeaddress specifies the complete node address to access the module, including port
number. Node number 0 selects an internal variable.

502 077 02

Manual P-NET Controller, PD 5000 61/65

14 Construction, Mechanical.

The PD 5000 controller is housed in a black plastic case. The module is designed for
plugging directly on to a mounting rail (EN 50 022 / DIN 46277), or for front panel
mounting. The module incorporates two snap connectors, which provide the terminals for
field connection, power and communications. The PD 5020 also provides an interface for
a PS/2 mouse and a standard PC keyboard.

Below are the mechanical diagrams for the various Controller configurations.

PD 5000/PD 5020 Scale Drawing (in mm)

PD 5010/PD 5015 Scale Drawing (in mm)

502 077 02

62/65 P-NET Controller, PD 5000 Manual

Materials
Case (injection moulded): Black NORYL GFN
Front foil: Polycarbonate
Back plate: Black anodised aluminium

Weight.

PD 5000 0.9 Kg
PD 5010/PD 5015 1.5 Kg
PD 5020 1.0 Kg

15 Specifications.

All electrical characteristics are valid at an ambient temperature -25 ºC to +70 ºC, unless
otherwise stated.

All specifications apply within the approved EMI conditions.

Power supply.

Power supply DC: nom 24.0 V
 min 20.0 V
 max 28.0 V
Ripple: max 5 %
Power consumption: max 6.0 W

Program storage.
PD 5000/PD 5010/PD 5015:

RAM Memory size: 512 Kbytes
FLASH Memory size: 512 Kbytes
With extension: 1 Mbyte FLASH/1 Mbyte RAM

PD 5020:
RAM Memory size: 2.5 Mbyte
FLASH Memory size: 1.5 Mbyte

Display.
PD 5010: 256 by 64 pixels
PD 5015: 240 by 128 pixels

PD 5020: Standard VGA colour monitor

502 077 02

Manual P-NET Controller, PD 5000 63/65

Keyboard.

Provides a programmable key layout using sealed, membrane switch technology.
PD 5010: 48 keys
PD 5015: 44 keys
PD 5020: PC keyboard and PS/2 mouse

Ambient Temperature.
PD 5000/PD 5020:

Operating temperature: -25 ºC to +70 ºC
Storage temperature: -40 ºC to +85 ºC

PD 5010/5015:
Operating temperature: -10 ºC to +45 ºC
Storage temperature: -20 ºC to +60 ºC

16 Approvals.

Compliance with EMC-directive no.: 89/336/EEC

Generic standards for immunity:
Industry EN 50082-2

Vibration (sinusoidal): IEC 68-2-6 Test Fc

502 077 02

64/65 P-NET Controller, PD 5000 Manual

17 Key Codes for PD 5010 and PD 5015

Key codes for PD 5010:

Key codes for PD 5015:

502 077 02

Manual P-NET Controller, PD 5000 65/65

18 Survey of channels in the PD 5000 controller.

Di
sp

la
y

$0
B

D
um

pD
at

a

D
um

pS
ta

tu
s

Sc
re

en
In

fo

C
ur

so
rH

id
e

Vi
de

oC
on

tro
l

C
ol

or
Ta

bl
e

 C
hC

on
fig

 C
hT

yp
e

C
hE

rro
r

Ke

yM
ou

se
 $

0A

Ke
yb

oa
rd

Bu
ffe

r

St
at

us
In

di
ca

to
r

Ke
yC

on
ve

rtT
ab

le

Ty
pe

M
at

ic

 M
ou

se
Bu

ffe
r

M
ou

se
Se

tu
p

 C
hC

on
fig

 In
pu

tS
tri

ng
Pt

r

In
pu

tF
ie

ld

 C
hT

yp
e

C
hE

rro
r

Pr
og

ra
m

 8
, 9

Pr
og

ra
m

C
on

tro
l

Pr
og

ra
m

St
at

us

Pr
og

ra
m

ID

Ta
sk

C
on

tro
l *

Ta
sk

St
at

us
 *

Sy
st

em
Po

in
te

r

 M
em

or
yI

nf
o

ID
An

dC
od

e

C
hC

on
fig

Li
br

ar
yC

on
tro

l

Li
br

ar
yS

ta
tu

s

Li
br

ar
yP

ro
gr

am
I

D M
ai

nt
en

an
ce

C
hT

yp
e

C
om

m
on

Er
ro

r

* C
ha

nn
el

 9
 o

nl
y

Al
ar

m
 D

ig
ita

l

I/O
 6

Fl
ag

re
g

O
ut

Ti
m

er

C
ou

nt
er

 C
hC

on
fig

 U
se

rL
IA

rra
y

M
ai

nt
en

an
ce

C
H

Ty
pe

C
hE

rro
r

G
at

ew
ay

 5

G
at

ew
ay

R
ec

or
d

G
at

ew
ay

In
te

rru
pt

 C
hC

on
fig

 C
hT

yp
e

C
hE

rro
r

Co
m

m
un

ic
at

io
n

1,

2,
3

Ac
tu

al
M

od
e

O
ut

pu
tB

uf
fe

r

In
pu

tB
uf

fe
r

 C
hC

on
fig

 D
ef

au
ltM

od
e

 C
hT

yp
e

C
hE

rro
r

Se
rv

ic
e

0

N
um

be
rO

fS
W

N
o

D
ev

ic
eI

D

 R
es

et

Pn
et

Se
ria

lN
o

 Ti
m

eD
at

e

Fr
ee

R
un

Ti
m

er

 M
od

ul
eC

on
fig

 M
ai

lfi
lte

r

M
ai

lb
ox

W
rit

eE
na

bl
e

C
hT

yp
e

C
om

m
on

Er
ro

r

Sw
No

.

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

xA

xB

xC

xD

xE

xF

