
502 086 07

PROCES-DATA A/S
NAVERVEJ 8, DK-8600 SILKEBORG • Tel. +45-87 200 300 • Fax +45-87 200 301 • info@proces-data.com • www.proces-data.com

VIGO

Fieldbus Management System
for Windows

95/98/ME/XP/NT/2000/XP/VISTA

Manual
GB

502 086 07

© Copyright 2006 by PROCES-DATA A/S. All rights reserved.

PROCES-DATA A/S reserves the right to make any changes without prior notice.

P-NET, Soft-Wiring and Process-Pascal are registered trademarks of PROCES-DATA A/S.

September 2006

502 086 07

Manual VIGO 3/108

Contents

1 General information ... 7
1.1 The VIGO elements.. 8
1.2 Application Programmers Fieldbus Interface... 10
1.3 Manager Information Base... 11
1.4 Instruction Data Converter, IDC... 13
1.5 HUGO2, the Real-time Communication Kernel ... 14
1.6 Network Driver.. 15

2 The VIGO programs .. 16
2.1 MIB View .. 16
2.2 Workspace. .. 19

2.2.1 Import/Export.. 21
2.3 MIB Edit .. 22
2.4 Properties Window ... 25

2.4.1 Properties in Element info.. 26
2.4.2 Properties in Type info ... 30

2.5 NET set up ... 30
2.6 Adding or Modifying Projects ... 32
2.7 VIGO access control .. 34

3 The Common Communication Interface.. 36
3.1 Single virtual objects .. 36
3.2 Multiple virtual objects.. 38
3.3 Application domains and shared physical objects ... 40
3.4 Two ways of accessing variables over the fieldbus... 41
3.5 Operating on Complex Variables ... 42
3.6 Error handling... 43
3.7 Error messages and Error Files ... 44
3.8 Simulation mode... 45
3.9 OLE Automation Interface.. 45
3.10 Performance... 46

4 Advanced VIGO Programming. ... 47
4.1 Properties and methods in VIGO professional .. 48

4.1.1 PhysId... 48
4.1.2 SubPhysId .. 49
4.1.3 InValue ... 50
4.1.4 DoRead .. 50
4.1.5 DoWrite... 51
4.1.6 Value .. 51
4.1.7 ExAnd (And) ... 51
4.1.8 ExOr (Or).. 52
4.1.9 TestAndSet... 52
4.1.10 ErrorCode.. 52

502 086 07

4/108 VIGO Manual

4.1.11 InformationInErrorCode .. 52
4.1.12 ErrorString... 52
4.1.13 DataReady .. 53
4.1.14 SetVIGOMessage... 53
4.1.15 EnableExceptions ... 53

4.2 Properties set by PhysId .. 54
4.2.1 InternalAddress .. 54
4.2.2 BitNo... 54
4.2.3 Offset.. 54
4.2.4 Size... 54
4.2.5 ObjectType... 54
4.2.6 DataType.. 55
4.2.7 WriteAccess. .. 55
4.2.8 ReadAccess. .. 55
4.2.9 OnlineAccess ... 55
4.2.10 ProtectedWriteAccess. ... 55
4.2.11 NodeCapabilities... 55
4.2.12 NodeAddress .. 56
4.2.13 MaxRetry... 56
4.2.14 PhysAddress... 56
4.2.15 IDCNo. .. 56

4.3 Properties set by SubPhysId.. 56
4.3.1 SubBitNo .. 56
4.3.2 SubOffset ... 56
4.3.3 SubSize .. 57
4.3.4 SubDataType ... 57

4.4 RACKS (MMS) related properties and methods.. 57
4.4.1 ProgramState ... 57
4.4.2 ProgramName.. 57
4.4.3 FileName.. 57
4.4.4 Progress ... 58
4.4.5 StopSequence.. 58
4.4.6 Download ... 58
4.4.7 Upload .. 58
4.4.8 DeleteDomain... 58
4.4.9 Start, Stop, Resume, Reset, Kill .. 58

5 Monitor ... 59
5.1 The Type Field ... 60
5.2 The Offset Field.. 60
5.3 The Data Field.. 60
5.4 Main menu.. 61

5.4.1 File.. 61
5.4.2 Edit ... 62
5.4.3 Options ... 63
5.4.4 Help .. 63

6 P-NET Tools .. 64

502 086 07

Manual VIGO 5/108

6.1 Set P-NET Node Address .. 64
6.1.1 Help .. 65

6.2 Channel Configuration ... 66
6.3 Program Download... 67

6.3.1 Channel .. 67
6.3.2 Code file ... 68
6.3.3 Autostart after reset.. 68
6.3.4 Selected library... 68
6.3.5 Selected program... 69
6.3.6 Download button .. 69
6.3.7 Start button... 70
6.3.8 Write enable ... 70
6.3.9 Details... 70
6.3.10 Starting the Download Utility from a shortcut ... 71
6.3.11 PD 5000 Controller ... 71

7 Tools for PROCES-DATA modules... 72
7.1 PD 3000 / PD 4000 Download ... 72

7.1.1 Download to controller ... 72
7.1.2 Process-Pascal code file.. 73
7.1.3 Operating system code file... 73
7.1.4 Download to ... 74
7.1.5 Starting PD 3000 / PD 4000 Download ... 74

7.2 Calculator Assembler ... 75
7.2.1 User Interface... 76
7.2.2 Editing a file.. 76
7.2.3 Assembling a program ... 77
7.2.4 Downloading a program... 77
7.2.5 Debugging a program .. 78
7.2.6 Calculator programming... 78
7.2.7 Help .. 78

7.3 Calculator Download .. 79
7.3.1 Download to channel.. 79
7.3.2 Calculator code file... 80
7.3.3 RunEnable.. 80
7.3.4 Download ... 80
7.3.5 Reset node. .. 81
7.3.6 Starting the Calculator Download program.. 81

7.4 Screen Dump ... 82
7.4.1 Save / Save as ... 83
7.4.2 Print .. 83
7.4.3 Load.. 83
7.4.4 Copy to clipboard ... 83
7.4.5 Load picture from controller ... 84

7.5 MapToMIB.. 85

8 Error codes .. 90
8.1 P-NET errors .. 90

502 086 07

6/108 VIGO Manual

8.2 HUGO errors .. 91
8.3 MIB errors... 93
8.4 MIBOLE interface errors .. 98
8.5 P-NET IDC errors... 99
8.6 VIGO errors .. 99

9 Appendix A .. 101

502 086 07

Manual VIGO 7/108

1 General information
VIGO is a Fieldbus Management System, installed on PC’s running the Microsoft Win-
dowsTM operating systems. VIGO is used in conjunction with process automation systems,
where individual control units are distributed within a plant, and where one or more Field-
buses are used for the data inter-communication. Microsoft WindowsTM is an operating sys-
tem, which executes programmes, controls the keyboard and screen, manages the hard
disc and contains tools for configuration and program execution. In a similar way, VIGO is
an "operating system", used to handle the different tasks specific to a Fieldbus system.

Some of these tasks are:
• To provide a uniform and well-defined communication link between standard programs

in PC’s, and variables and constants in modules (nodes) on a Fieldbus. These vari-
ables and constants are identified by a unique name (identifier). A standard program
could for example be an Excel spreadsheet, or it may be created using Visual Basic,
Delphi, Visual C++ etc.

• To hold information about the location and type of each identifier. This information in-
cludes the node address for the interface module, a logical or symbolic address, an
offset, the data structure, the data type etc.

• To execute simultaneous communication through different Fieldbus interfaces, and
handle the queuing problems that occur in a Windows multi-tasking environment, when
several applications wish to communicate at the same time.

• To keep track of which tools can be used with the various types of data and data struc-
tures, with consideration for the actual physical objects and interface modules used
within the plant. These tools may be configuration tools, compilers, assemblers etc.

• To provide information to compilers and assemblers about variables that already exist
in VIGO, so that they do not need to be declared again. It is therefore possible to cre-
ate compilers where one does not need to declare global variables, because the com-
piler itself can load the necessary information directly from the description that VIGO
holds about a plant.

• To provide an editor, in order to construct and maintain a description of the physical
plant, where nodes, data types and the associated identifiers are defined. If one wants
to insert, modify or delete single elements from the description, using a program other
than the editor, this may be done using the editor’s OLE automation interface. This
might occur for example, if a plant description already exists in a file, and this is re-
quired to be used as a VIGO description of a plant.

• To associate the users program files, help files, connection diagrams, data specifica-
tions etc., with the physical objects and modules, which are contained within the VIGO
description of the plant.

502 086 07

8/108 VIGO Manual

• To simulate plant data within the PC. This facility can be used in connection with an
off-line configuration, backup / restore of plant information and when simulating plant
functionality. This is useful for training purposes.

All exchange of data between inter-communicating PC application programmes and VIGO
is done by means of OLE automation, (a Microsoft standard for data exchange). As an OLE
automation Server, VIGO provides an open and well-defined interface to the user’s applica-
tion program. Any data requested from any point within the plant network, is treated and
looks as if it were directly accessed from within the PC. The user does not need to consider
variations in different communication protocols, data conversion or addressing methods.

From the users point of view, all these tasks are handled by VIGO, and the result is a sim-
ple, uniform and well-defined interface to all data on the networks. VIGO is an open sys-
tem, where the program interface is written in such a way, that new tools and new Fieldbus
systems can be developed and added by the user.

The impact of using VIGO is significant, in that there is now only a need to interface to one
system, no matter what the Fieldbus type is. Tools, utilities and programmes developed for
use with VIGO can therefore be regarded as general purpose. This means that an increas-
ing number of companies can provide packages for common use, which will result in a
shorter development phase. This will also lead to cost savings, since an integrator needs
only to understand one system.

1.1 The VIGO elements
The Fieldbus Management System VIGO is a collection of several program elements. The
basic elements within VIGO are VIGOSERV, the MIB and HUGO2. The flexible structure of
VIGO allows additional elements to be easily added, and to grow with the users needs.
These elements, which can be dynamically linked without requiring changes to the existing
system, are Instruction Data Converters, Network Drivers and Hardware Drivers.

VIGO allows user applications to be designed without consideration for the underlying net-
works, by representing those networks as a collection of independent, installable compo-
nents.
VIGO provides the opportunity for the user to dynamically add new tools, such as a Node
Configuration Editor, a MAP file converter, a Backup/Restore utility, a Monitor, a Compiler,
etc.

502 086 07

Manual VIGO 9/108

The elements of VIGO are shown below.

All this makes VIGO an open system, which can always be expanded for inclusion of new
network connections to physical objects, and new tools for configuration. It is open, in the
sense that anyone can provide a network or tool implementation, and anyone can develop
an application that uses the communication functions offered by VIGO.

Within the following sections, the elements of VIGO will be examined in greater detail.

502 086 07

10/108 VIGO Manual

1.2 Application Programmers Fieldbus Interface
The Application Programmers Fieldbus Interface - VIGOSERV, provides a simple interface
to standard program packages such as Visual Basic, Delphi and Visual C++, spreadsheets,
databases, Human-Machine Interfaces and other visualisation programs such as SCADA.

VIGOSERV is an OLE Auto-
mation Server, which creates a
consistent and transparent in-
terface between the user pro-
gram (application), and the physi-
cal elements (objects) within the
plant.

OLE Automation is a part of Ob-
ject Linking and Embedding
(OLE2), which is a facility within
Microsoft WindowsTM, to enable
real-time exchange of data be-
tween applications.

User Applications
eg. Visual Basic, C++, EXCEL,...

VIGOSERV
Application Programmers Fieldbus Interface

Common Application Service Interface:
OLE2 Automation

VIGOSERV supports functions, such as read and write to variables, upload and download
of files, start, stop and reset of programs, etc., without being aware of network operations.
These functions, together with all their parameters, define the Common Application Service
Interface. The figure below illustrates the link between VIGOSERV and user applications.

Any manipulation of a particular
physical object is achieved via
its associated virtual object
within VIGOSERV. Virtual ob-
jects are created by user appli-
cations, where a virtual identifier
is also defined. The virtual object
is made to point to the physical
object by means of the physical
identifier - a unique name. The
physical identifier is defined in
the Manager Information Base.

Application

VIGO
Virtual
Object

Physical
Object

The Application uses
a Virtual Object to
access a Physical Object

The Virtual Object is
identified by the
Virtual Identifier

The Physical Object is
identified by the
Physical Identifier

502 086 07

Manual VIGO 11/108

1.3 Manager Information Base
VIGO includes a Manager Information Base - MIB. VIGO uses the MIB to describe the
whole Fieldbus control system of a plant, which in VIGO is called a Project.

In general terms, a Fieldbus system is constructed with a number of Fieldbus devices,
called Nodes. The MIB contains a description of the different Nodes in the system, and
holds information about these Nodes, such as Node Identifier, Nets, Node address, Node
type and other relevant information. It also holds information about the Nets within the pro-
ject. From all this information, the communication path to the Node can be computed.

Furthermore, a node consists of a number of variables. The MIB contains a description of
all the variables within a Node that may be accessed via the Fieldbus. Each variable within
a Node can be of simple (byte, integer, real etc.) or complex type (array, record, string).

In VIGO, the entire collection of variables within a Node can be regarded as one large vari-
able of complex type, the Node type. Access to a variable within a Node is described using
the same method as with an access to a Record in the Pascal or C languages, where the
Node is the Record and the variable is a field within that Record.

In a similar way, the contents of all Nodes within a plant can be regarded as one huge vari-
able, organised as a Record and represented by a Project identifier. Access to a Node
within a Project is then described by means of the Node identifier, where the Project is the
Record, and the Node is a field within the Project Record.

A global identifier, unique for a specific variable within the plant, may now be composed by
combining the above-mentioned structured elements. A global identifier is the same for any
device within the Project and starts with the Project identifier followed by a ':'. The rest of
the global identifier is then constructed, by appending the Node identifier and the sub-
element identifiers, to create the complete path to the variable. Each identifier is separated
by '.', in exactly the same way as access to fields in a Record, e.g.:

Project_Identifier:Node_Identifier.Variable_Identifier

Thus, a Variable definition consists of a Variable_Identifier, information about the location
of the Variable, and a Type description. Such a definition must be available for any type of
Variable, be that a simple variable, a complex variable, a Node or a Project.

As an example, a simple Variable will be used. The Variable is identified by a Name, called
the Variable_Identifier. The location of the Variable describes the internal address within a
Node. The Type description for a simple Variable just defines one of the basic data types,
e.g. real, byte, boolean etc.

Another example of a Variable is a Node. A Node is identified by a Name called the
Node_Identifier. The location of the Variable describes the Fieldbus 'path' to the Node, in-
cluding specific Fieldbus information. The Type description for a Node is given by the Node
Type, which describes the internal variable structure.

502 086 07

12/108 VIGO Manual

If more than one Variable of identical Type is found within a Project, the Type only needs to
be defined once. This includes Node Types.

Node Types are typically rather complex, but having a well-defined structure. Such types
may be generated automatically from device descriptions or by compilers/assemblers.

The user interface used to monitor the contents of the
MIB and to enable the structure of the system to be il-
lustrated is handled via a MIBOCX. This is an OLE
Control Extension (OCX) according to Microsoft Win-
dows. The MIBOCX allows a browser function to be
performed, and displays a tree-structure, in a similar
way to standard file managers. In this case however,
the elements are not drives, directories and files, but
Project, Nodes, Variables, and Types. An example is
shown in the figure to the right. This OCX control can
be directly called and used by an object oriented pro-
gramming language supporting this feature (Visual Ba-
sic, Visual C++, and Delphi). This OCX control is used
within a number of different VIGO tools, including the
MIB Edit.

In a similar way to standard Windows programmes, the
right mouse button can be used within the MIBOCX, to
show dedicated menus, depending on the selected ob-
ject. This means that selecting a Node and using the
right mouse button results in a menu list relevant for a
Node. Selecting a Project provides another menu list
relevant for a Project. This is described in more details
later.

As described above, the MIB contains all the information required to access a physical ob-
ject, such as a digital I/O, an analog I/O, a flow meter, etc. When VIGOSERV requests in-
formation from the MIB, using a global identifier for a physical object, the MIB collates all
necessary information about the physical object, and returns this to VIGOSERV.

In other words, the MIB describes how data is structured, how different data elements are
related, where data is stored, and who has access to that data. It therefore enables a
physical plant to be completely described as a Project, in terms of data, related data struc-
tures and data location.
Once the data definition is completed, a system is capable of automatically acquiring data
from, and distributing data to, control level devices, such as Windows applications, process
computers, PCs, PLC’s, I/O modules, etc.

502 086 07

Manual VIGO 13/108

1.4 Instruction Data Converter, IDC
Different Fieldbus systems may use dissimilar data formats, syntax’s and services on a va-
riety of networks. The purpose of VIGO is therefore to have a common application program
interface to any Fieldbus interface. VIGOSERV defines a Common Communication Service
Interface, which fulfils the demands for services and data formats for the different Fieldbus
types. A plant can be built, which uses a variety of different Fieldbus systems simultane-
ously. For each Fieldbus within the plant, it is therefore necessary to be able to convert
to/from various sets of services and data formats into the common format. This conversion
is performed by a set of Instruction Data Converters, IDC's, one for each Fieldbus system.

Information exchange between
VIGOSERV and the IDC, is
based on the RACKS -
specification.
The Instruction Data Converter
(IDC) is a Microsoft WindowsTM

Dynamic Link Library (DLL).

The IDC must convert the VIGO
data and services into the related
Fieldbus data and services that
are understood by the relevant
Fieldbus node.

VIGOSERV
Application Programmers Fieldbus Interface

IDC
Instruction Data Converter

HUGO2
Real-time Communication Kernel

Common Communication Service Interface
Manufacturing Message Specification

Specific Network Protocol following the HUGO2 syntax

This data must be packed in such a format in order that the related network driver is able to
transform it for network communication. The IDC and network driver is always closely
linked to each other, by means of an internal network specific packet format.

502 086 07

14/108 VIGO Manual

1.5 HUGO2, the Real-time Communication Kernel
The routing and handling of several simul-
taneous information packages for the
same, or different networks, is also man-
aged by VIGO, via the real-time communi-
cation kernel HUGO2. HUGO2 ensures
that communication packages and mes-
sages do not get mixed, in situations where
several applications are trying to access
the same bus system, in a multi-tasking
environment. HUGO2 takes care of defin-
ing and managing networks, queuing and
routing messages, establishing error-
handling procedures and handling inter-
rupts at different levels. The queuing facility
in HUGO2 is shown in the figure to the
right.

HUGO2

IDC

Network
Driver

Dispatcher

Network
Driver

Network
Driver

IDCIDC

HUGO2 is designed for both time critical and non-time critical communication. Time critical
communication is controlled by hardware interrupts, whilst non-time critical communication
is performed by means of messages within the Windows environment.

HUGO2 is able to handle several communicating applications simultaneously, which may
involve dealing with many requests and responses at the same time.

HUGO2 can dynamically load network drivers, which gives the user the opportunity to add
new network drivers if required. Basically, HUGO2 is a transport system, which means it
does not need to know what is being sent. The interpretation of Fieldbus messages is car-
ried out by the associated IDC.

HUGO2 is also a communication system that manages data security and integrity, for data
inquiries made to the plant.

502 086 07

Manual VIGO 15/108

1.6 Network Driver
A HUGO2 Network Driver interface provides the connection between HUGO2 and a stan-
dard Fieldbus driver (for example P-NET), or a LAN driver (for example VIGO-IP).

A communication network can be realised in several different ways. Three network types
can be connected to HUGO2. These are Fieldbuses, Local Area Networks (LAN) and Wide
Area Networks (WAN). There are distinct differences in the usage of these network types.
The LAN and the WAN types are only used for transporting messages, which means they
have no knowledge of what is being sent on the network, whereas Fieldbuses have built in
protocols, which interpret the contents of what is being sent and received.

The combination of network types provides the capability of installing a Windows applica-
tion on a PC, which has access to a Local Area Network and/or Wide Area Networks, and
then routing the information via another PC, which has access to a Fieldbus, to which the
physical object is connected.

This is all illustrated in the figure below.

User
Applications

VIGOSERV

P-NET
Protocol

HUGO2

LAN
Driver

LAN
HW

MIB

HUGO2

LAN
Driver

LAN
HW

P-NET
Driver

P-NET
HW

P-NET
Node

P-NET

Local Area
Network

Local Area
Network

Eg. IPX/SPX
NetBios
IP

Eg. Ethernet P-NET

502 086 07

16/108 VIGO Manual

2 The VIGO programs
The VIGO Fieldbus Management System is a collection of associated programs, DLL's and
tools. The principle window of the VIGO program is shown below. This must always be
loaded (or minimised), when VIGO functionality is required.

The VIGO window consists of three tabs: [MIB View], [Workspace] and [MIB Edit].

VIGO can be used for a variety of purposes, which depend on the requirements of the user.

Before VIGO can be used, it must be configured to match the required VIGO environment.
This includes establishment of a Workspace having a selection of projects enabled, to-
gether with all the parameters of the appropriate drivers correctly set.

MIB Edit is used by the systems integrator who wants to set up a new, or modify an existing
system, and needs to carry out the necessary configuration of the nodes. In this situation,
VIGO can be started up from the Start Menu, from a shortcut or directly from the Windows
Explorer.

2.1 MIB View
The [MIB View] tab shows the
projects that can be accessed
by the application programs
that need to use VIGO. VIGO
will be automatically started as
soon as one application pro-
gram creates a VIGO object.
Under these circumstances,
VIGO will be loaded in a mini-
mised state, and will only ap-
pear in the task bar. VIGO will
be automatically closed again,
when VIGO objects are no
longer required by the applica-
tions.

[MIB View] provides an illustra-
tion of the structure of a pro-
ject, in terms of nodes, chan-
nels and other variables that
are included in a particular
system.

Furthermore, [MIB View] en-
ables the user to find and se-
lect variables, in order to call
upon other programs and tools

502 086 07

Manual VIGO 17/108

that are relevant to the selected item. Such tools can be selected from a menu that appears
when the right mouse button is clicked on a highlighted item.

The MIB supports a Grouping element that allows the user to group nodes, aliases etc. A
group is shown with a group symbol, which is similar to a folder in Windows. The use of
groups helps to provide you with an improved structural overview of your project, since you
can create a group for a specific section of your plant or for a single machine.

[MIB View] utilises a custom control, called MIBOCX, which is an "OLE Control Extension",
designed for VIGO. The MIBOCX is used to provide a visual representation of the structure
and relationship of the variables within a project.

The project structure is shown in the form of a tree, in a similar way as does the Windows
Explorer file manager. However, instead of showing folders and files, the MIBOCX in [MIB
View], illustrates the nodes and variables relating to the project description of the system.
The same MIBOCX control can be included in other programs, such as those developed
using Visual C++, Visual Basic or Delphi, since all of these languages support the use of
such controls.
If the right mouse button is pressed when an element in the structure is highlighted, a menu
is shown. This menu provides a choice of functions and tools, but which are only relevant
for the selected element.

A Project is identified by a name,
and is represented by a Project icon
in the MIBOCX.
A factory can be divided into differ-
ent projects or projects can repre-
sent systems at different locations.
The elements that are used to de-
scribe a physical plant within a pro-
ject, consist of Nodes, Aliases and
Virtual names. The Aliases and Vir-
tual names are used as shortcuts for
constructing and combining identifi-
ers from already defined variables,
thereby giving access to actual vari-
ables in a more convenient way. A
Project can be expanded into it’s
elements, by clicking on the + sign
at the Project icon.
Networks are visible in the MIB
structure. When Nets are created,
they are shown in the MIB with a net
symbol. Opening a Net element will
show a list of nodes that are con-
nected to the selected net.

The complete
global identifier
for the register

Project icon

Node icon for
PD3221 (UPI)

Channel in a
Node

Register in a
channel

502 086 07

18/108 VIGO Manual

A Node within the Project description (the MIB) is defined as a module or a unit within the
physical plant (e.g. a PD3221- Universal Process Interface, UPI).
Each Node is represented by a Node icon in the MIBOCX.

A Node, which is a variable, is based on a type, a Node type. The Node type describes the
data structure within the node. The data structure of a particular Node variable, e.g. it’s
channels and registers, can be seen by clicking on the Node icon’s + sign. A particular
Node type can be used many times within a project description.

The MIB description is built using a number of inter-related elements. These elements may
be of different Kinds. One Kind of element can represent a Node. Another Kind of element
can represent an Array, and yet another can represent a Channel. Each Kind of element is
represented with a particular icon, used to illustrate the variable in the MIBOCX.

It is also possible to select an element of an array, by changing the element index number.
Click once on the selected index number, type in a new index number and then click the
mouse pointer elsewhere.

In the example shown above, the Project is called Simulation Project and the Node is called
UPI. Within the UPI node, the data structure in the form of channels can be seen. Within
the ANALOG_IN_1 channel, the register ANALOGIN is highlighted. The complete global
identifier for a selected variable is shown in the Global identifier field.

The ANALOGIN register shown above has the complete global Physical identifier:
SimulationProject:UPI.ANALOG_IN_1.ANALOGIN

When a Project icon is opened
in the [MIB View] tab, only
Nodes, Aliases and Virtual
names are shown. This is the
default setting. Nodes and Vir-
tual elements can be individu-
ally excluded from the view.

The [Show Nodes] check box
and the [Show Aliases] (Virtual
Elements) check box are used
to limit the number of elements
to be shown in [MIB View].9

The [Show Value] check box is
used to add a Value field. This
field shows the value of the se-
lected variable. Entering a
value, into this field followed by
<Enter>, will write to the variable.

502 086 07

Manual VIGO 19/108

2.2 Workspace.
A [Workspace] in VIGO describes which projects will be loaded, defines the default project
and identifies a Node in a project where the driver parameters and port settings are de-
fined.

Each workspace holds its own set of parameters. The name for the workspace can be cho-
sen to be the same as the name of the location. Workspaces can be added/deleted from
the pull down menu. The [Workspace] list box shows the selected workspace used by
VIGO.

VIGO is designed to enable a PC to simultaneously handle multiple projects. Each Project
is given a name, called the Project Identifier. A Project description is stored in a MIB file.
The [Workspace] shows a list of existing projects. Only those projects, which are enabled in
the actual workspace, will be shown in the [MIB View].

A [Default project] can be selected. When the global identifier is without project name, the
default project is assumed. A Project may contain a number of networks, each with a num-
ber of Fieldbus nodes connected. These networks are specified as properties of the project.

502 086 07

20/108 VIGO Manual

[Loaded Drivers] indicate which drivers are currently loaded.

The <Driver Parameters> button will display a new window, showing Port and Net proper-
ties for the driver in question. The properties cannot be edited from this window. See also
Guidance for selecting node address … on page 65.

The values of the properties are stored in the MIB file, so the values can be edited from the
[MIBEdit] tab.

Some drivers, e.g. the P-NET 3920 driver for Windows NT, requires parameters that are
not suited to store in the MIB file. These parameters can be edited by clicking the <Ad-
vanced> button in the [Driver Parameters] window. The <Advanced> button will only be
present if the driver in question needs such parameters.

502 086 07

Manual VIGO 21/108

2.2.1 Import/Export

From the [Workspace] menu it is possible to both import and export a Workspace.

Exporting a Workspace will gather all relevant configuration data relating to the workspace
(including MIB and SIM files for enabled projects) and put this data in a single file. This
VIGO Configuration File will have the extension vcf, and can be imported from another PC.

The Import/Export feature is a fast and simple way to move a configuration from one PC to
another. Companies who install VIGO along with their own products can also use it. They
can setup their workspace as needed, export it and copy the file to a floppy disk. Inserting
the disk in the PC during the VIGO install, will force VIGO to import this configuration file
instead of the default configuration files that follows with the VIGO system.

502 086 07

22/108 VIGO Manual

2.3 MIB Edit
The [MIB Edit] tab shows all the projects that have been set up on the PC, and is used to
modify the structure and properties of nodes and variables within a project.
A Variable occupies a memory location in a physical device. Variables are therefore located
within Nodes, or as previously described, a Node itself can be regarded as one huge vari-
able. Nodes are declared as being of a particular Node type. A Node type fully describes all
the types of variables contained within that Node. When a Node type has been assigned to
a Node, the declared variables become available for access through VIGO.

The various Types used within the MIB can be divided into two distinct groups:

Group 1, which in-
cludes Basic types
(simple types), and
Array types and
Strings. These
types are repre-
sented on the
screen by a red
icon, and do not
include any sub
elements (simple
types have no "+"
sign in front of the
icon).
A Basic type is de-
scribed in the MIB
as a Basic Type
Element, repre-
sented by a red
Basic type Icon.
The Basic types
are: Boolean, Byte,
Char, Word, Inte-
ger, LongInteger,
Real, LongReal,
Timer, RealDate and OldDate. The Array Type Element also belongs to this group, and is
represented by a red Array type Icon.

The properties of an Array type element holds information about the type structure of the
Array elements, as well as the minimum and maximum index for the Array. A string is a
special form of an Array (consisting of an array of characters) and is represented by a red
String type Icon.

502 086 07

Manual VIGO 23/108

Group 2:
This group of types
(complex types) is
described in the
MIB as a Type Ele-
ment, and is
shown with a red
icon, and having
one or more Sub
Elements, indi-
cated with blue
Icons. The Type
Element properties
hold the name of
the type, and the
structure of the
type, (Nodetype,
Channeltype, Re-
cordtype etc.).

The Sub Elements
with blue icons
represent Chan-
nels, Registers,
Swno’s, Record
fields etc. The properties of these Sub Elements describe the relative location of the sub
type within the complex type, and the name of the sub type.

Blue icons are also used for physical Nodes, Aliases and Virtual names. These icons are
not shown in Types view.

Note A special kind of Element can be found under a NodeType, a ‘PortTemplate’. A
PortTemplate is not a variable itself, but when the NodeType is selected for a
Node, a variable based on the PortTemplate will be inserted under the Node.

The MIBOCX offers the ability to show Nodes or Virtual elements or both, in Variables view.
The icons shown in the MIBOCX represent variables, and they are normally blue, except
for the Project icon and the array index, which are red. The purpose of providing a means
of selecting which elements to show reduces the total number of icons displayed, and helps
to make it easier to select a particular icon.
By clicking a “+” sign, the MIBOCX will automatically find and show the icons representing
the Sub elements. New nodes, and Virtual elements of an already defined type, can be
easily inserted.
Virtual names and aliases can be used to give alternative names to already defined Vari-
ables.

502 086 07

24/108 VIGO Manual

In the Types View mode, the MIBOCX only shows the tree structure of the types to two lev-
els. A red icon with a “+” sign can be opened, and one or more blue icons will appear. This
mode provides the opportunity to see all type definitions available within the Project, and to
define new types.
When a new type is created, such as a new Nodetype, a Recordtype or an Arraytype, all
the associated sub elements must already be declared, before the complex type is defined.
This is similar to the procedure used when declaring types in Pascal or C++.

The Global identi-
fier is not valid in
the Types view.

However, this field
can be used as the
means to search
for types and vari-
ables, having
known names by
keying these in.

Also the drop down
listbox will list pre-
viously selected
elements, and fur-
ther selections can
be made from this
list.

The Properties of a
new Element must
be set up, before
the new element
can become operational. This is achieved by using the Properties Window, selected by us-
ing the right mouse button menu inside the MIBOCX.

The [MIB Edit] tab loads a copy of the MIB files into memory. These files are not used for
communication, and during editing VIGO will continue to use the old version of the MIB
files, until the new files are saved. When the MIB files are saved, all VIGO objects will
automatically be updated to reflect the contents of these new files.

To save memory, MIB Edit can be disabled, using the [Disable MIB Edit] check box.

502 086 07

Manual VIGO 25/108

2.4 Properties Window
MIB Elements are used to describe nodes, nets and the different variable types, within the
MIB. These elements can be of different Kinds. One Kind of element could describe a
node, another Kind might describe an Array, and so on.

The MIB is a collection of such elements, which are referenced to each other as Parent,
Sub, Next or Previous element.

Each element has a set of properties,
describing its relationship with other
elements and various related con-
stants. These properties must be set
up before the MIB can be used. The
[Properties] window for a particular
element is made available using the
right mouse button menu, when that
element is highlighted in the MIBOCX.

The [Properties] window is divided into
two or three tabbed sheets, depending
on the view mode. [Element Info], and
[Type Info] are always shown. In Vari-
ables View (showing Nodes and vari-
ables), an additional tab sheet called
[Summary info] is displayed, as shown
in the figure.

If the MIBOCX is in Variables View,
the Element info mainly applies to
Nodes, for selection of the Node type,
and also to select to which Network
the Node is connected.

The [Type Info] tab provides information about the selected type, and cannot be modified
from here. The [Summary Info] tab shows the access conditions that VIGO is using to ac-
cess the selected variable. These access conditions are not necessarily the same access
conditions that are defined for the element, as shown on the [Element Info] tab sheet. Fur-
thermore, the [Summary Info] shows the Internal address as the sum of SWNo and Regis-
terNo for the variable.

If the MIBOCX is in Types View, [Element Info] shows the Kind of element and type Name
of the selected item (red icons). For sub elements (blue icons), [Element Info] is used to se-
lect the type and relative location of the sub type. The [Type Info] shows the properties of
the selected type and can be modified from here (modification can only be undertaken with
red icons).

502 086 07

26/108 VIGO Manual

2.4.1 Properties in Element info

Kind
The Kind field shows the selected MIB Element type. Depending on the Kind actually se-
lected, some of the following Properties can be applied, and are shown either in the [Ele-
ment Info] or [Type Info] sheets.

The Kind is selected during the generation of new MIB elements. The New function is
available in the MIB Edit’s right mouse menu. The Kind for a MIB element in the MIBOCX
can only be changed, by firstly deleting it and then by adding a new MIB element of the re-
quired Kind.

The different Kind icons are listed below. The first group being red icons, the next group be-
ing blue icons, and the last group being icons used for special elements.

 Project

 BasicType NodeType ChannelType

 RecordType Enumerated ArrayType

 BitArrayType BufferType SetType

 String BitMapType PointerType

 Procedure Function VirtualRecordType

 VirtualArrayType EnumeratedName NetType

 Node (*)

 Channel Register SoftwireNo

 RecordField Constant Alias

 VirtualName Port Net

 PortTemplate PortReference Group

 Property StringValue

* Elements of Kind Node can have different icons, depending on the NodeType:

When clicking on the Icon in the properties window, a new window for selecting an icon will
appear, and the user can change the Icon for a specific Node.

502 086 07

Manual VIGO 27/108

Name
The Name field holds the partial identifier for the variable or the type, which the MIB Ele-
ment represents. The identifier can be modified, by first selecting the icon from the
MIBOCX, then clicking the left-hand mouse button once on the name string, to enable the
editing facility.

Type
The Type field indicates a type identifier for the variable or the type, which the MIB Element
represents. In the Variables view, the Type can be selected or changed for Nodes and Vir-
tual Names, by using the list box, and choosing one of the already defined types. In the
Types View, the Type is used to select or change the sub types, which are to be included in
already defined types.

Element access conditions
It is important to understand the principles of check box setting. When a check box is
checked in the [Project Property] window, it will override the equivalent checkboxes in the
Nodes properties of the project, and also those in Channels and Registers. Similarly, a
ticked check box in a Node will override the equivalent check boxes in Channels, Registers
and SWNo. The check boxes in Channels will override those that are equivalent in Regis-
ters.

502 086 07

28/108 VIGO Manual

The ability to Read from and Write to
a variable can be defined in the
[Read/Write access] check boxes.

The [Protected write access] check
box should be checked when the
variable is protected by the write en-
able bit in the module.

The [Online access] check box is
used to indicate to VIGO whether the
Project, Node, variable or a field in a
record, is located in an external
physical Node (checked), or in a
simulation file (not checked). See
also page 45, Simulation mode.

[Backup]. This check box indicates
to the Backup/restore program to in-
clude this variable in the backup.

[Visible]. If this box is NOT checked,
the variable (and the associated sub-
variables) will not be shown in [MIB
View].

[Max CtrlCards]. If the Operating system in the hardware device supports multiple commu-
nication blocks for LongLoad and LongStore, this value indicates how many communication
blocks the PC should try to use.

[Serial No:]. Identifies the Serial number for the Node.

[Ports] – Identifying the available Communication ports for this Node Type. You can jump to
a Port by selecting it in the list box and click on the <Go to Port> button.

[SWNo:]. In P-NET, a SoftWire number (SWNo), defines a logical address to identify a vari-
able. The [SWNo] must be set in accordance with the actual value within the node.

502 086 07

Manual VIGO 29/108

[RegisterNo] - holds the number, which references the location of a variable within a Chan-
nel. (SoftWire offset)

[Offset] - holds the offset, (in number of bytes) of a Record Field within a Record.

[PortNo]. Holds the Port number of the selected Communication Port.

[Node Addr(dec)]. This field holds the node address, which has been reserved for the node.
This field is used together with the property of the Net, to form the complete route to the
node. The Node address is a decimal value.

[Net] - is a list box, used to select to
which Net the Port is connected. Only
nets declared of a type that fit the port
in question will be listed in the list box.

[Net type] – Identifies the type of the
Net.

If the Net, to which the node is connected, is a Modem port, an additional field appears
within which a telephone number must be set.
If the Port is a LAN port, the node address is either an IP or an IPX address (help on setting
up an IP or IPX connection is found on the [Workspace] tab under [Driver parameters] for
the IP or IPX driver). This field is also used by P-NET, when utilising the Set P-NET Node
Address program.

[Reference] is used to describe the full global identifier for an Alias. The reference can only
refer to another identifier within the same project description, and therefore the Reference
must be without the Project Identifier.

502 086 07

30/108 VIGO Manual

2.4.2 Properties in Type info

[Capabilities]. This property describes
the capabilities of the destination Field-
bus Node. The coding of Capabilities is
Node and Fieldbus dependent. Further
information about the capabilities of a
particular node, may be obtained from
the vendor, or from the Node manual.
Reference can also be made to the Ap-
pendix, for a list of the capabilities
numbers for PROCES-DATA modules.

[Object Type] - is used for defining
the availability of right mouse menu
items. The Object Type adheres to
the numbering identification as de-
scribed in the Appendix.

[Size]. This property defines the
size, in bytes, occupied by the vari-
able within the node.

[Data type]. This field indicates the
data type of the variable in the
node.

[Min Index] and [Max Index] fields,
indicate the minimum and maxi-
mum index of an Array.

[Elementtype] is used to describe
the type of an Array element.

2.5 NET set up

A Project may include a number of different communication networks, each having a variety
of Fieldbus nodes connected. Each network (Net) is identified with a Net Identifier.

502 086 07

Manual VIGO 31/108

Adding Nets is done in the same way as
adding other elements to the MIB.
When the Net is added, a type for the Net
must be selected. This is done in the
Properties window.

If a Net is placed in the outermost col-
umn, the net is said to be “Public”.

If a Net is placed within a Group object,
the Net is “Private”.

Public Nets, which have been defined and named within a particular Project, are available
to other projects within a given Workspace. Public Nets in different projects with identical
names are therefore assumed to be connected. Private Nets having the same name as
given in other Projects are assumed to be different Nets.

A pre-defined Nettype can be selected for use by a Net, such as a Local Area Network
(LAN), Modem, Fieldbus etc. The type list box provides the means to select the required
Net type for the net in question. Only NetTypes defined within the same project will be
shown.

Any gateway or router must be specified in the MIB, including PC’s.

The information about all the Nets that are included in a Project is stored in the MIB file.
This means that a MIB file can be located in a server, and shared with others.

502 086 07

32/108 VIGO Manual

2.6 Adding or Modifying Projects
Adding projects
A new project can be
added to VIGO, by se-
lecting the Workspace
icon (a PC) or a Pro-
ject icon, while in [MIB
EDIT], and clicking the
right mouse button. By
selecting Add Project a
window is presented
as shown.

Choose a name for
your project, and de-
cide whether to do one
of four things:

“Create new standard MIBfile” - which means that a description file called “PDTYPES.MIB”
is copied and associated with the new project. This file contains several predefined Types,
which can be used inside other Types, or for setting up new variables or a complete Pro-
ject. New Types can also be added to this Project description file.

“Create new empty MIBfile” - which means that a description file called “EMPTY.MIB” is
copied and associated with the new project. This file contains only simple predefined
Types. New Types can also be added to this Project description file.

“Copy From Existing MIBFile” – means that a new MIB is created, which is based on a MIB
that already exists. Amendments to this file will not affect the MIB from which this file origi-
nated.

“Use existing MIBfile” – which means that the MIB file associated with this project is not
copied but uses one that has already been generated. An existing MIB file can be selected
by using the Browse facility. It should be noted that any amendments made to this file
would also be seen by other projects, which have been specified to use this MIB.

The actual name and location for a MIB file for a specific project can be found by selecting
Properties on the right mouse menu for the Project in question. A new MIB file can also be
selected by clicking the Browse button.

502 086 07

Manual VIGO 33/108

Modifying Projects
Selecting an element in a Project description is performed using the left-hand mouse but-
ton. Sub elements can be displayed if a plus [+] sign, associated with an element is clicked.
Sub elements become hidden when a minus [-] sign is clicked. It is also possible to select
an element of an array, by changing the element index number. Click once on the selected
index number, type in a new index number and then click the mouse pointer elsewhere.

When modifying a Project description, the right mouse button menu is used to add, copy,
paste and delete Elements within the MIB. This can be performed from within one Project
description, or between different Project descriptions.

The right mouse menu is object oriented, which means that the functions in the menu vary,
depending on the selected object/element. The principle is, to present only the functions
and tools, applicable to the selected object.

If a NodeType icon is selected, or the Project icon is highlighted,
the specific NodeType or Project can be saved, as a sub-MIB
(SMB) file or as a MIB file. This is achieved by using the Save as
menu item from the right mouse menu.

The saved Type can then be included in another Project descrip-
tion, by creating an Empty Type and using the right mouse menu
item Update Type.

A SMB file generated by the Process-Pascal compiler can also be
arranged to be included in a Node Type in the project description.

To ensure that all types within a Project description are declared before they are used, a
Consistency check can be performed (selected by using the right mouse button).

The result of the Consistency check is automatically displayed in the form of a dialogue box
indicating OK, or by providing a list of errors.

The Properties for any element are set from the [Properties] window, available from the
right mouse button menu, when the element is selected.

502 086 07

34/108 VIGO Manual

2.7 VIGO access control
The access to the different functionality in VIGO can be limited according to the operators’
responsibility. As an example, the daily operator is limited to only read/write non-protected
variables. The local electrician is trained in how to replace and configure nodes. Therefore,
he is allowed more functionally. The person who has installed the system can be the su-
pervisor and is allowed unlimited access.

VIGO allows four types of
users, each with their own
level of access:
• Default
• User 1
• User 2
• Supervisor

Default user has no pass-
word protection.

The names “User1“ and
“User 2“ can be changed.
The access level relates
to the VIGO window ([MIB
View], [Workspace] and
[MIB Edit]), write access
to variables, and availabil-
ity of programmes in the
toolbox (right mouse but-
ton) menu.

[Import of Configuration files]
Determines whether or not the user will be able to import configuration files from the
<Workspace> menu.

The [VIGO Window] function can be selected to be one of the following:
• “Minimized”: The [VIGO window] cannot be opened; only shown minimized on the task

bar.
• “MIB View”: Only the [MIB View] tab is visible.
• “+View Workspace”: Means that both the [MIB View] tab and the [Workspace] tab are

active.
• “+Select Workspace”: allows in addition, that different workspaces can be selected.
• “+ Edit Workspace”: Allows in addition, that the workspace and driver parameters can

be edited.
• “+ MIB Edit (+ edit drivers parameters)”: Allows the user to edit the MIB, together with

all other functions.

502 086 07

Manual VIGO 35/108

[Default write access for projects]
The write access for the Application programs that use VIGO, can be set individually for
each Project, or a default setting can be used.

If [None] is selected, no writing to any variable is permitted, but they can all be read.

When [To not protected variables] is selected, normal unprotected variables can be written
to.

When [To all variables] is selected, there is no limitation on reading or writing.

Generally, if the property of a variable in the MIB indicates no write access, the above se-
lection will have no effect, and the result will be no write access to that variable.

Besides the [Default write access for projects], a [Specific write access for project] can be
defined. In this way, the write access can be defined individually for each or a specific pro-
ject. The write access definition for a specific project will overwrite the default definition.

The availability of certain [Right mouse button programs] can be limited for the different
types of users. The right mouse button programs are divided into five groups, and each of
the groups can be selected as available or not. The selection will be directly reflected on
the right mouse button menu when selecting the elements in the MIB using the MIBOCX.

502 086 07

36/108 VIGO Manual

3 The Common Communication Interface
3.1 Single virtual objects
The following section describes the use of VIGO. The description uses as a basis, the pro-
gramming language Visual Basic, but this can be translated into Visual C++, Delphi or Ac-
cess forms without difficulty.
From a development point of view, it is a simple procedure to create an application, which
has access to the physical objects.

There are only three steps to follow.
Step 1:
The first step is to create a virtual object recog-
nised by a virtual object identifier. In this example
the virtual object identifier is set to "Object1".

set Object1 = CreateObject("VIGO.Std")

From now on, the application will point to the Vir-
tual Object by using the Virtual object Identifier.

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Application #1 Domain

Set Object1 = CreateObject ("VIGO.Std")

Step 2:
The next step is to associate the
virtual object with the physical ob-
ject.

The virtual object within VIGO,
has a property called PhysId,
which contains the Physical Iden-
tifier.

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Application #1 Domain

Object1.PhysId = "Valve_1"

Manager
Information

Base
Target

Specification

All information that is necessary to access the physical object will be obtained from the
previously configured Manager Information Base (MIB), by setting the PhysId property.
See the figure above.

502 086 07

Manual VIGO 37/108

For example, a valve is the Physical Object, and labelled as 'Valve_1’. In the Manager In-
formation Base, the 'Valve_1' is used as the Physical Identifier for this valve and points to
the physical Valve.

Step 3:
Once the virtual object points to the
physical object, it is possible to operate
upon the physical object. For example, it
is possible to read or write to a variable.

In the case of the valve identified as
Valve_1, it is now possible to get (read)
or set (write) the state of Valve_1.

The valve state is read using the follow-
ing code:

X = Object1.Value

By assigning the Value property of the virtual object "Object1" to the local application vari-
able X, X will contain a Boolean value indicating the valve state of the physical object.

The valve is closed (set to OFF) using the following code:
Object1.Value = OFF

If the application needs to manipulate another physical object, step 2 and step 3 have to be
carried out again.

For example, to read the value within a physical object uniquely identified as "FlowRate"
and then to read a temperature in a different object, the following code would be used when
using the same virtual object.

Object1.PhysId = "FlowRate"
Y = Object1.Value

Object1.PhysId = "Valve_1"

Physical Identifier

VIGO property

Virtual Object identifier

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:

"Object1"

X = Object1.Value

Application
#1 Domain

Valve_1

1 4

32

502 086 07

38/108 VIGO Manual

The temperature is known to be found in the Project called “SampleProject”, in a Node
identified as “UPI” having an analogue input channel, with the temperature value contained
in the measurement register.

Object1.PhysId = "SampleProject:UPI.ANALOG_IN_1.ANA LOGIN"
Z = Object1.Value

3.2 Multiple virtual objects

For an application that needs to commu-
nicate with many physical objects re-
peatedly, several objects can be created.
For example, a device number, a valve
position and a temperature are to be
monitored continuously.

Step 1:
To create multiple virtual objects within
VIGOSERV, The OLE function Create-
Object must be called, for each instance
of a new virtual object.

VIGO
Virtual
Object:
Object1

Software
Application #1
eg. Visual Basic

Application #1 Domain

Set Object1 = CreateObject ("VIGO.Std")
 Set Object2 = CreateObject ("VIGO.Std")
 Set Object3 = CreateObject ("VIGO.Std")

Virtual
Object:
Object2

Virtual
Object:
Object3

For example:
Set Object1 = CreateObject("VIGO.Std")
Set Object2 = CreateObject("VIGO.Std")
Set Object3 = CreateObject("VIGO.Std")

Step 2:
The second step is to get the virtual objects to point to the Physical Objects.

The association of virtual objects with physical objects only needs to be carried out once.
This means that the procedure of calling the MIB with the global identifier, in order to re-
trieve the related information and apply it to the Target Specification, is only done once.
Following this, the physical objects can be directly manipulated via the virtual objects, lead-
ing to a faster access, because all the network and address information is available within
the Target Specification.

For example:
Object1.PhysId = "Sample:UPI.Service.DeviceId.Devic eNumber"
Object2.PhysId = "ValveState"
Object3.PhysId = "Temperature"

502 086 07

Manual VIGO 39/108

Step 3:
Now that the virtual objects are
pointing to their associated physical
objects, each of the three physical
objects can be operated upon via the
virtual objects (Object1, Object2 and
Object3).
The current values for the valve posi-
tion, device number and the tem-
perature can now be monitored as
shown below:

(Read device number)
X = Object1.Value

(Read valve state)
Y = Object2.Value

(Read temperature)
Z = Object3.Value

VIGO

Virtual
Object:
Object1

Software
Application #1
eg. Visual Basic

Object1.PhysId = "Sample:UPI.Service.DeviceID.DeviceNumber"
 Object2.PhysId = "ValveState"
 Object3.PhysId = "Temperature"

Virtual
Object:
Object2

Virtual
Object:
Object3

Manager
Information

Base

Target
Specification

Target
Specification

Target
Specification

Application #1 Domain

VIGO
Virtual
Object:
Object1

Software
Application #1
eg. Visual Basic

 X = Object1.Value
 Y = Object2.Value
 Z =Object3.Value

Virtual
Object:
Object2

Virtual
Object:
Object3

Application #1 Domain

Physical Process

502 086 07

40/108 VIGO Manual

The first assignment will enable the device number to be ascertained from the application’s
local variable X. The second assignment will enable the valve position to be determined by
the local variable Y. The third assignment will ensure that the variable Z contains the tem-
perature value.

When it is required to update the values several times, only step 3 needs to be carried out
again. No further calls to the Manager Information Base will be carried out, because all the
required data are already contained within the virtual objects.

3.3 Application domains and shared physical objects
Each application accessing VIGOSERV has its own application domain within VIGO. An
application can only access the virtual objects it has created.

If a number of separate applications need to operate on the same physical object, each ap-
plication has to create its own private virtual object, and point to the same physical object
as the other applications. For example, two applications want to access the same meas-
urement value, identified as "Temperature":
Application #1 (Eg: Excel)
Appl1 = CreateObject("VIGO.Std")
Appl1.PhysId = "Temperature"

Application #2 (Eg:Visual Basic)
Appl2 = CreateObject("VIGO.Std")
Appl2.PhysId= "Temperature"

In this situation, both the virtual objects “Appl1” and “Appl2”, are pointing to the same physi-
cal object.

Different applications may use the same identifier for the virtual object, but VIGOSERV will
still contain a virtual object for each application, as illustrated in the figure below.

VIGO

Virtual
Object:

Object5

Virtual
Object:

Object4

Virtual
Object:

Object1

Software
Application #1
eg. Visual Basic

Virtual
Object:

??

Application #1 Domain Application #2 Domain Application #N Domain

Software
Application #2

eg. Excel

Software
Application #N
eg. Visual C++

Virtual
Object:

Object3

Virtual
Object:

Object2

Virtual
Object:

Object1

502 086 07

Manual VIGO 41/108

3.4 Two ways of accessing variables over the fieldbus

Two different modes can be used to access a physical object. The first mode is called Di-
rect-access, which sends a command via the network, i.e. a read command, waits for the
result and then returns to the application when the command has finished and data has
been obtained from the physical process system. The Direct-access approach is shown in
the figure below, in the figure to the left.

Physical Process

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Request Data

Application
#1 Domain

1 4

32

Obtain Data

Network Request Network Response

65

Physical Process

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Start Operation and
get acknowledge

Application
#1 Domain

1

43

2

Network Request Network Response

Obtain Data in the
Virtual Object

The second mode is called Buffered-access, which also sends a command via the network,
i.e. a read command, but here VIGOSERV will return immediately to the requesting
application before the command has finished and the data has been obtained from the
physical object. After a while, VIGOSERV will return the result to the specific VIGOSERV
property associated with that particular physical object, and it is now up to the application to
read the result. This is shown in the figure above, to the right. To initiate a request using
Buffered-access, two Methods called DoRead and DoWrite are used. The VIGO object
must be created as a VIGO.PRO object to get access to these methods.

The idea behind Buffered-access is to make parallel execution possible. For example, by
initiating the reading of ten different values from the process system, the latest sampled re-
sults held within VIGOSERV can be read later by the application, when required.

502 086 07

42/108 VIGO Manual

Example using Direct- access:
Read the Valve State
X = Object1.Value

Set the Valve State to OFF
Object1.Value = OFF

Example using Buffered- access:
Start obtaining the Valve State
Object1.DoRead

Later in the user application program, read the Valve State
X = Object1.InValue

Set the Valve State to OFF
Object1.InValue = OFF
Object1.DoWrite

If a new result has not yet been obtained by the virtual object property following a DoRead,
by the time the application requires the use of it, the property will act like Direct-access. In
this case, the return to the application will only occur when the result has been obtained.

3.5 Operating on Complex Variables
It is possible for the user application to operate on complex variables contained within a
node. In order to do this, it is necessary to understand how the complex data are handled
by VIGOSERV.

VIGOSERV is able to transfer a complex variable from a node into a virtual object, using a
single request from the user application. To do this, the property PhysId already knows the
variable is of a complex type, and by using the DoRead Method, the data is obtained in the
virtual object.

For example, the complex variable "Coordinate" is composed of “X_Value”, “Y_Value” and
“Z_Value”.

Coordinate
 X_Value
 Y_Value
 Z_Value

The physical identifer for the complex variable would therefore be:
Object1.PhysId = “Coordinate”

The next step is to load the complex variable from the node, for the virtual object Object1:
Object1.DoRead

502 086 07

Manual VIGO 43/108

The above-mentioned complex data is now available within the virtual object

To select one of the sub-fields within the complex structure, another property called Sub-
PhysId must be used. The internal access property InValue is used to operate on these
data elements in the sub-fields.

For example:
Object1.SubPhysId = “X_Value”
X = Object1.InValue
Object1.SubPhysId = “Y_Value”
Y = Object1.InValue
Object1.SubPhysId = “Z_Value”
Z = Object1.InValue

In a similar way to reading the entire complex variable with a single request, it is also pos-
sible to write the complete complex variable, using a single request from the user applica-
tion. For example:

Object1.DoWrite

This way of handling complex data structures can reduce the total number of data trans-
missions on a network. This feature also gives the ability to obtain information, which is
closely related, and time synchronised.

3.6 Error handling
VIGO provides extensive information about any errors that may occur during each of the
communication tasks and during the use of VIGO.

When using properties or methods for an object, the VIGO system will set an ErrorCode
Property to a value that corresponds to the result of the performed action. The ErrorCode
may relate to errors in communication, conversion errors or errors from searching in the
MIB.

The ErrorCode can be monitored by the application, following any access to a property or
method for the object. If an error occurs, the ErrorCode is set to a unique number. If no er-
ror occurs, the ErrorCode will be SUCCESS (0x0000).

The application can also read the ErrorCode as a text string. The error string is contained in
the ErrorString Property. When reading the ErrorString property, a translation of the Error-
Code into a text string is automatically performed. If an error occurs, the application can be
programmed to take specific action, as shown in the examples below.

Error handling in VIGO follows the OLE Automation Exception rules contained within the
Microsoft WindowsTM OLE2 specification. When virtual objects are created, Exceptions are
disabled.

502 086 07

44/108 VIGO Manual

It is possible to disable and enable exceptions using the following property for the object:

Object1.EnableExceptions = True (* or False *)

Below is a Visual Basic program example using Exceptions:

Sub Timer1_Timer ()
 On Error GoTo ErrorHandler ‘Exception
 TempText.Text = Object1.Value
Finish: Exit Sub

ErrorHandler:
TempText.Text = Object1.ErrorString
Resume Finish

End Sub

The example above shows that the error information given by the object property Error-
String, will be shown instead of the temperature "Object1.Value", in cases where an error
occurs.

Below is a Visual Basic example, where the ErrorCode is monitored following an access to
a read Property:

Object1.PhyId ="Temperature"
Temp = Object1.Value
If Object1.ErrorCode Is SUCCESS Then
 TempText.Text = Temp
 Else
 TempText.Text = Object1.ErrorString
End If

The error information given by the object property ErrorString will be shown in the text field
identified by “TempText”, in cases where an error occurs.

3.7 Error messages and Error Files
The object property ErrorString contains a text string that describes the current error in
plain text. The error may have occurred from within VIGOSERV, an IDC, a network (eg.
P-NET Fieldbus, LAN etc.), the MIB that holds the project description, or the communica-
tion kernel HUGO2.

The error message is converted from an error code into an error message, which is auto-
matically translated into the same language as that selected on the machine in which VIGO
is running. The error messages are found in files, having the file-extension corresponding
to the language definition specified by Microsoft. A VIGO standard installation provides
texts for Danish and English errors. The text files are found in the VIGO program folder with
the extension “DAN” and “ENG” respectively.

502 086 07

Manual VIGO 45/108

Copying an existing error text file into another file with the same file name can create an er-
ror text file for a new language, but with a file extension that matches the new language.
The error messages can then be translated into the new language within the new file.

3.8 Simulation mode
One of the property settings of a VIGO object determines whether specific variables are lo-
cated externally within an actual physical node on a network, or are held internally within
the PC for simulation purposes. This property, called OnLineaccess can only be set when
using VIGO.PRO.
The state of this property can be assigned from within an OLE compliant application pro-
gramme written, for example, in Visual Basic or Delphi.

The corresponding property in the MIB, called Online access can also be set to specify
whether variables are located externally or internally.

If the OnLineAccess property for a VIGO object is set to false (not-checked in the proper-
ties window), it means that the value of a particular variable can be read or modified from
an internal location (on the PC), rather than relying on the fact that the physical node would
normally have to be connected. This facility can be extremely useful during the
commissioning and testing phases of a new project. Once one of the properties has been
set, VIGO ensures that any reading or writing to a declared variable will be directed to the
internal simulated variable. Any additional operations on this variable, such as, for example,
to simulate the incrementing of a counter, would be arranged using a separate simulation-
test program, which will run in parallel with the application being tested.

3.9 OLE Automation Interface
VIGOSERV has been designed in accordance with OLE Automation rules, defined for the
Microsoft WindowsTM environment. VIGOSERV gives access to object properties and
methods, which can be used by any application supporting OLE Automation. For a virtual
object, a property represents a variable and a method represents a procedure.

Each property offers a pair of functions, one to get (read) the property value and one to set
(write) the property value. Therefore, when object properties are used in application pro-
grammes through VIGOSERV, one of two things are performed:

Set the value of a property (Write)
Get the value of a property (Read)

With most properties, their values can either be read or set according to the needs of the
application. Properties that can be read or set are called read-write properties. Some prop-
erties only allow an application to get their value. These are called read-only properties.

A method performs an action on an object, and may or may not return a value. Methods
may take a number of arguments. Arguments can be passed by value or by reference.

502 086 07

46/108 VIGO Manual

3.10 Performance
The performance of VIGO is not dependent on the user application, because VIGO is built
for real-time communication, which is performed using interrupts. The communication task
will not stop, even if the loading of a large file is taking place or a word processing program
is being started.

VIGO is able to handle several hundred external data requests per second. However, per-
formance depends on the efficiency of the underlying network driver and network perform-
ance.

502 086 07

Manual VIGO 47/108

4 Advanced VIGO Programming.
In VIGO there are two 32-bit OLE automation interfaces, structured as InProc OLE servers.
These interfaces are called VIGO standard and VIGO professional.

VIGO standard is a reduced interface for ease of use, where the number of properties
available is limited to the following: PhysId, Value, ErrorCode, ErrorString. All commonly
used read and write operations can be achieved.
To establish contact with VIGO standard, an OLE automation object must be created,
where the OLE name for the VIGO standard object is VIGO.STD.
Invoking a particular command, which depends on the programming language being used,
performs this.

In Visual Basic, the command is:
Set Obj = CreateObject ("VIGO.STD")

In Delphi, the command is:
Obj:= CreateOleObject ('VIGO.STD');

In Visual C++, the command is:
Obj -> CreateDispatch("VIGO.STD");

VIGO professional is used for advanced programming, with an extended set of properties
and methods.
To establish contact with VIGO professional, an OLE automation object must be created,
where the OLE name for the VIGO professional object is VIGO.PRO.
Invoking a particular command, which depends on the programming language being used,
performs this.

In Visual Basic, the command is:
Set Obj = CreateObject ("VIGO.PRO")

In Delphi, the command is:
Obj:= CreateOleObject ('VIGO.PRO');

In Visual C++, the command is:
Obj -> CreateDispatch("VIGO.PRO");

502 086 07

48/108 VIGO Manual

4.1 Properties and methods in VIGO professional

A Read of a variable within a node into an application is divided into two steps. First, the
content of the variable is loaded into the Object Data. The next step is to convert the re-
ceived data, and then transfer the converted data to the application. A similar situation oc-
curs to Write, except that the first step is to convert data sent from the application, and then
to store the converted data in Object Data.

4.1.1 PhysId

PhysId is used to relate the VIGO object to a variable within a Node. Assigning the Global
Identifier to the PhysId will achieve this. The normal format for a Global Identifier is:

 ProjectIdentifier:NodeIdentifier.ChanneIIdentifier.Register…

If the global Identifier does not contain a ProjectIdentifier, the default project selected in the
[Workspace] tab in VIGO will be assumed.

Writing to this property will start a search in the MIB. This search will return all the neces-
sary information about the variable, such as the Addresses and Offsets needed to access
the variable within a particular Node.

Writing to the PhysId property will resize and clear the Object Data to zero.

Application

Fieldbus

Object Data

SubPhysID is
used to select part
of the Data in the

object.

Read:
I n Value

Write:
I n Value

PhysID is used to
select a complex
or simple variable
in a No de, used
by the
communic a tion. DoRead DoWrite

Read: Value is a
sequence of
DoRead and
Read: InValue

Write: Value is a
sequence of
Write: InValue
and DoWrite

Data conversion

502 086 07

Manual VIGO 49/108

The following Properties of an object are set according to the contents of the MIB:

NodeAddress, InternalAddress, Offset, BitNo, ICDNo, Size, ObjectType, DataType,
NodeCapabilities.

DoRead/ DoWrite methods, or a read/write of the Value property, will use these properties
when accessing Variables in Nodes via the Fieldbus.
The following assignments are also performed:

SubOffset= 0
SubDataType= DataType
SubBitNo= BitNo
SubSize= Size

These properties are used when reading/writing to the Value and InValue properties.

The result of the search in the MIB, will also set the following properties:
ReadAccess, WriteAccess, OnLineAccess

The ErrorCode will be set, depending on the result of the search in the MIB.

4.1.2 SubPhysId

SubPhysId is used to specify a sub-part of a complex variable already specified in PhysId.

The SubPhysId must be assigned with the additional “.Identifier” , e.g. a record field identi-
fier. The PhysId can be set to point to a complex array-variable. The SubPhysId property
can then, for example, be used to specify a specific array element.

The SubPhysId property cannot hold: Project, Node, Channel, Register or SwNo, only Ar-
ray [index] 's and Record field Identifiers. The PhysId must be pointing to at least a SwNo
or a Register in a Channel, before SubPhysId can be used to select part of the SwNo or the
Register.

Writing to the SubPhysId property will start a search in the MIB, to get the value of the fol-
lowing properties: SubOffset, SubDataType, SubBitNo, SubSize.
No other properties are affected, including Object Data.

If the SubPhysId is set as an empty string, the following assignments are performed:
SubOffset= 0
SubDataType= DataType
SubBitNo= BitNo
SubSize=Size

The ErrorCode will be set according to the result of the search in the MIB. The properties
set by SubPhysId have an influence on the access, when using the InValue property and
Value property.

502 086 07

50/108 VIGO Manual

Read/Write to InValue:

If SubPhysId is empty, the entire variable specified by the PhysId will be transferred be-
tween the application and the VIGO object.
If SubPhysId is not empty, only the part of the variable specified by the SubPhysId, will be
transferred between the application and the VIGO object.

4.1.3 InValue

InValue represents a sub-part of the variable in Object Data, as specified by the Sub-
PhysId. The InValue property is declared as a Variant type, and can handle all kinds of data
(Integer, Real, String, Arrays, etc.). A Read of this property will return the specified part of
the internal variable in the VIGO object. Similarly, a Write will write to the Object Data.
There is no Fieldbus communication.

When reading InValue, VIGO converts the part of Object Data specified by the SubDa-
taType, and returns this data as a Variant. A part of this conversion task, is also to swap
the bytes, according to the little/big endian principle (Intel/Motorola). The data-conversion is
ONLY performed on simple data-types (Boolean, byte, integer, real...). It is therefore not
recommended to use InValue on complex variables.
In the same way, a Write to InValue, will convert the Variant from the application to the cor-
rect data type appropriate for the variable in the field device, and will then store the data in
the internal Object Data.

If the SubPhysId holds a part of an identifier, only the part specified by the SubPhysId will
be transferred between the application and the object.

4.1.4 DoRead

The DoRead method is used to load a variable from a node into Object Data. The variable
is specified by the properties set by PhysId (NodeAddress, InternalAddress, Offset, BitNo,
Size, ObjectType, DataType, IDCNo, NodeCapabilities). The data is NOT converted.

DoRead starts the communication, and then immediately returns to the calling application.
The Data will arrive later in Object data. If a new DoRead is started, within the same VIGO
object, before the previous DoRead or DoWrite has been completed, the process will not
return to the application, before the former DoRead/DoWrite is completed and the new
DoRead has been started. DoRead cannot raise an exception due to communication er-
rors. The application program must read ErrorCode before accessing the data.

The DataReady property will be “FALSE”, until a completed response from the Node is re-
ceived.

502 086 07

Manual VIGO 51/108

4.1.5 DoWrite

The DoWrite method is used to transfer the data from Object Data into a variable in a node.
The variable is specified by the properties set by PhysId (NodeAddress InternalAddress,
Offset, BitNo, Size, ObjectType, DataType, IDCNo, NodeCapabilities). The data is NOT
converted.
DoWrite starts the communication, and returns immediately to the calling application. The
response will arrive later. If a new DoWrite is started, within the same VIGO object, before
a previous DoRead or DoWrite has been completed, the process will not return to the ap-
plication before the former DoRead/DoWrite is completed and the new DoWrite has been
started. DoWrite cannot raise an exception due to communication errors. The application
program must read ErrorCode when DoWrite has completed.

The DataReady property will be “FALSE”, until the completed acknowledge from the Node
is received.

4.1.6 Value

Value is a property, representing the variable specified by PhysId and the SubPhysId. The
Value property is declared as a Variant type, and can handle all kinds of data (Integer,
Real, String, Arrays, etc.).

A Read or Write to this property is equivalent to a read or write to the variable. VIGO re-
turns to the calling application when the data is available, or when no response has been
received after a timeout of a maximum of two seconds.

During a Write to Value, VIGO takes care of converting the Variant received from the appli-
cation into the correct data type appropriate for the variable in the field device. It also
swaps the bytes according to the little/big endian principle (Intel/Motorola). When reading
Value, VIGO converts the loaded data into a Variant, using the properties set by
SubDataType. The data conversion is ONLY performed on simple data types (Boolean,
byte, integer, real etc.). It is therefore not recommended to use Value on complex vari-
ables.

If SubPhysID is empty, a read from Value is the same as first calling DoRead, followed by
Reading InValue, and a write to Value is the same as Writing to InValue, followed by calling
DoWrite.

If the SubPhysId is not empty, only the part specified by the SubPhysId will be transferred
between the application and Object Data, but the whole variable will be transmitted on the
network to/from the Node.

Note: Be careful if SubPhysId is not empty when using Value ! Some of the data in the
object may be zero.

4.1.7 ExAnd (And)

The ExAnd property is a P-NET specific property, to AND a value to a variable in a P-NET
module. The ExAnd property is declared as a Variant type. Writing to this property will per-

502 086 07

52/108 VIGO Manual

form a logical AND function between Data written to the property and the Data already in
the variable. The result is stored in the Variable.

4.1.8 ExOr (Or)

The ExOr property is a P-NET specific property, to OR a value to a variable in a P-NET
module. The ExOr property is declared as a Variant type. Writing to this property will per-
form a logical OR function between Data written to the property and the Data already in the
variable. The result is stored in the Variable.

4.1.9 TestAndSet

The TestAndSet property is a P-NET specific Read Only property, to Test-And-Set a Boo-
lean in a P-NET Node. Reading this property will start a special communication service that
reads and sets the Boolean true in the Node. The result of the reading is returned to the
application as a Variant.

4.1.10 ErrorCode

ErrorCode is a Read Only property of the type Integer (2 bytes). This property indicates
whether an error has occurred, after accessing certain properties and methods.

ErrorCode = 0 indicates that there is no Error. If the ErrorCode <> 0, this indicates, that
some aspect of a transfer has been found to be incorrect.

The following properties and methods will generate an ErrorCode:

PhysId, SubPhysId, Value, Invalue, DoRead, DoWrite, Download, Upload, Pro-
gramState, ModelName, Revision, Programname, NodeAddress, Vendor, Start,
Stop, Reset, Resume, Kill, SelectProgram, UnSelectProgram, DeleteDomain,
TerminateDownload, ExAnd, ExOr and TestAndSet.

The ErrorCode is not changed until one of the mentioned VIGO properties or methods is
used again. The ErrorCode can be read as error text in the ErrorString property.

4.1.11 InformationInErrorCode

This Boolean property controls if Historical Errors are visible in the ErrorCode. If Informa-
tionInErrorCode is set to “TRUE”, then Historical Errors are also visible in ErrorCode. The
default value for InformationInErrorCode is “FALSE”.

4.1.12 ErrorString

The ErrorString is defined as a Read Only string (max 150 characters). In reading this
property, a text string will be returned, containing an explanation of the ErrorCode. The lan-
guage of the error string depends on the language that has been selected on the machine.
If the selected language is not supported in VIGO, English will be chosen.

If the ErrorCode is zero, the ErrorString will be empty.

502 086 07

Manual VIGO 53/108

4.1.13 DataReady

DataReady indicates whether a DoRead, DoWrite, Upload or Download cycle has finished.
DataReady should be tested before a new DoRead or DoWrite is used on the same object,
DataReady returns “False” when a DoRead or DoWrite method is in progress. DataReady
returns to the calling application immediately.

4.1.14 SetVIGOMessage

This method is used to set up a message that will be sent when a DoRead or DoWrite on
the particular object has finished.

The method is called using four parameters:
SetVIGOMessage(parameter1, parameter2, parameter3, parameter4)

Parameter1: Type "Long".

Handle of Window that the message will be sent to.

Parameter2: Type "Long".

MessageNumber that will be posted after DoRead/DoWrite has finished.

Parameter3: Type "Long".

Optional user data. This value will be posted along with the message itself as the
wParam of the Windows message.

Parmeter4: Type "Long".

Optional user data. This value will be posted along with the message itself as the
lParam of the Windows message.

An application can call this method before starting a DoRead or DoWrite. This way it is not
necessary for the application to continuously call DataReady to check if the
DoRead/DoWrite has finished. The SetVIGOMessage method must be called before start-
ing the DoRead or DoWrite.

4.1.15 EnableExceptions

If EnableExceptions is set “TRUE”, all errors from VIGO will perform an Error Exception in
the client program. The client program must then handle the exception.

The default value for EnableException is “FALSE”.

The Exception handler can then read the ErrorCode and ErrorString.

502 086 07

54/108 VIGO Manual

4.2 Properties set by PhysId
PhysId normally sets the following properties. These properties can be read, and by doing
so, the MIB can be checked. In very special situations, the application program can, with
care, write to these properties.

4.2.1 InternalAddress

The InternalAddress property is designed to hold the “internal address” of a variable in a
Fieldbus module.
For P-NET, the “internal address” is a Softwire number, but it can also be a physical ad-
dress in a module. If PhysAddress is true, a physical address is assumed.
The InternalAddress is used by DoRead, DoWrite, Download and Upload, and indirectly by
Value.
InternalAddress is automatically set when writing to a PhysId.

4.2.2 BitNo

The BitNo property is used to select a single bit in a BitArray. This property is used when
accessing a field device. The BitNo is used by DoRead, DoWrite and indirectly by Value. It
is automatically set when writing to a PhysId.
Writing to the BitNo property will copy BitNo to SubBitNo.

4.2.3 Offset

The Offset property is used to specify a byte offset within a complex variable in a Node.
When a record field within a larger complex variable is to be selected, the offset specifies
the position of the first byte of this field within the record. Offset is used by DoRead, DoW-
rite, Download and Upload and indirectly by Value.

When the Offset property is changed, SubOffset is automatically set to 0.

The Offset is automatically set when writing to a PhysId.

4.2.4 Size

The Size property indicates the size of the Variable (in bytes), to be accessed via the Field-
bus. It indicates to the communication stack the number of bytes to be transferred. It is also
used to allocate memory for the VIGO object. Size is used by DoRead, DoWrite and indi-
rectly by Value.

Size is automatically set when writing to a PhysId.

Writing to the Size property will copy Size to SubSize.

4.2.5 ObjectType

The ObjectType property holds an integer value associated with a particular type of object.
The object type is used to identify whether the object (specified by PhysId), is a particular
type of Node, Channel, SwNo, or Register. As an example, all the different Channel types

502 086 07

Manual VIGO 55/108

have different object type numbers. The ObjectType should reflect the actual data type in
the field device.
An application program can use this property for testing the object type. For example, the
download program can only work with a Program Channel as the target. A list of Object
types for channels and modules can be found in the Appendix.

ObjectType is automatically set when writing to PhysId.

4.2.6 DataType

The DataType property holds an integer value, which defines a particular data type. This
object type should reflect the actual data type in the field device. It is not used for data
conversion. A list of data types can be found in the Appendix.

DataType is automatically set when writing to PhysId.

4.2.7 WriteAccess.

The property WriteAccess holds the status of a variable, selected by PhysID. When writing
to PhysId, this property is set to “True”, if all elements in the Global Identifier have [Write
Access] checked (Project, Node, Channel, Register or SwNo) else it will be set to “False”.

4.2.8 ReadAccess.

The property ReadAccess holds the status of the variable, selected by PhysID. When writ-
ing to PhysId, this property is set to “True”, if all elements in the Global Identifier have
[Read Access] checked (Project, Node, Channel, Register or SwNo), otherwise it will be set
to “False”.

4.2.9 OnlineAccess

OnlineAccess is a Boolean property, used to indicate whether a DoRead, DoWrite or indi-
rectly by Value, shall access an external Node or an internal simulation file. If OnlineAccess
is “True”, there will be communication on the Fieldbus network. If OnlineAccess is “False”,
the data will be read from or stored in a simulation file. When writing to PhysId, this prop-
erty is set to “True”, if all elements in the Global Identifier have “OnlineAccess” checked
(Project, Node, Channel, Register or SwNo), otherwise it will be set to “False”.

4.2.10 ProtectedWriteAccess.

This property reflects the state of the [Protected] checkbox of the variable selected by
PhysID. ProtectedWriteAccesss = “True”, means that the variable is protected by Write
Enable. It is also used to prevent the user accessing variables with ProtectedWriteAccess,
when [VIGO Access] is not granting write access to write protected variables.

4.2.11 NodeCapabilities

The NodeCapabilities property informs the IDC which protocol limitations that shall be used
for read or write to a specific Node.

502 086 07

56/108 VIGO Manual

The value in NodeCapabilities depends on the format that can be used on specific Field-
buses. A list of the capabilities numbers for P-NET can be found in the Appendix.
NodeCapabilities is used by DoRead, DoWrite and indirectly by Value. It is automatically
set when writing to PhysId.

Please note, that the value of NodeCapabilities is returned as a string, converted to hexa-
decimal format. For example, a value of 32 is returned as a string holding the characters
‘20’.

4.2.12 NodeAddress

The NodeAddress property holds the full address of a Node on the Fieldbus. The format for
the Node address must follow the HUGO2 standard for building a Node address.
NodeAddress is automatically set when writing to PhysId.

4.2.13 MaxRetry

Reserved for future use.

4.2.14 PhysAddress

The PhysAddress property is of type Boolean. When the property is set “TRUE”, VIGO will
inform the PNET IDC to use physical addressing, instead of logical addressing.
The physical address used must be written in the InternalAddress property.
This property is set “False” when writing to PhysId.

4.2.15 IDCNo.

The IDCNo property must hold the number for the IDC that is appropriate for the target
Node. PhysId normally sets this property. This property should only be accessed in very
special circumstances.

4.3 Properties set by SubPhysId

SubPhysId normally sets the following properties. These properties can be read, and by
this means, the MIB can be checked. In very special situations, the application program
can, with care, write to these properties.

4.3.1 SubBitNo

The SubBitNo property is used to select a single bit in a BitArray. This property is used
when the application exchanges data with the VIGO object, and the data type is a Bit array.
The SubBitNo is used by InValue and indirectly by Value.

SubBitNo is automatically set when writing to PhysId or SubPhysId.

4.3.2 SubOffset

The Suboffset property is used to specify the byte offset within a complex variable, located
in a VIGO object. When a record field within a larger complex variable is to be selected, the

502 086 07

Manual VIGO 57/108

offset specifies the location of the first byte of this field within the record. The SubOffset is
used by InValue and indirectly by Value.

SubOffset is automatically set when writing to a PhysId or SubPhysID.

4.3.3 SubSize

The SubSize property indicates the size (in bytes), of the selected part of the Variable in
the VIGO object. This property is used when the application exchanges data with the VIGO
object. The SubSize is used by InValue and indirect by Value.

SubSize is automatically set when writing to PhysId or SubPhysId.

4.3.4 SubDataType

The SubDataType property holds an integer value that identifies a particular data type. The
number should reflect the actual data type of the selected part (SubPhysId) of the variable
in the VIGO object. This SubDataType is used by the conversion function when the applica-
tion exchanges data with the VIGO object. A list of data types can be found in the Appen-
dix. When writing to PhysId or DataType, the new value of DataType is copied to
SubDataType.

The SubDataType is used by InValue and indirectly by Value.

4.4 RACKS (MMS) related properties and methods

4.4.1 ProgramState

The ProgramState property follows the MMS standard, and is used in Program Channels.
These channels must be of ObjectType 11 otherwise ProgramState cannot be used.

Further information about ProgramState can be found in the manual for any of the nodes
that have a Program Channel.

4.4.2 ProgramName

The ProgramName property follows the MMS standard, and is used in Program Channels.
These channels must have the ObjectType property set to 11 otherwise ProgramName
cannot be used.

Further information about ProgramName can be found in the manual for any of the nodes
that have a Program Channel.

4.4.3 FileName

This property is of type string. It is used to hold a path to a file when Download or Upload is
called.

502 086 07

58/108 VIGO Manual

4.4.4 Progress

Progress is a Read Only property of Integer type that holds the number of bytes transmitted
in percentage of the total number of bytes, to be transmitted. The Progress property is valid
with Download or Upload.

The Progress property is very useful, for indicating to the user that the data transmission is
still running.

4.4.5 StopSequence

The StopSequence method can stop a data transmission, which has been started with
DoRead, DoWrite, Download or Upload.

4.4.6 Download

This method is used to Download a program to a standard Program Channel. The paths
must be set prior to its use, in Filename.

4.4.7 Upload

This method is used to upload a program from a standard Program Channel. The paths
must first be set in FileName. This method is not implemented in VIGO 5.0.

4.4.8 DeleteDomain

This method is used to delete the selected domain in a standard Program Channel. The
domain must be selected first.

4.4.9 Start, Stop, Resume, Reset, Kill

These methods can be used with a standard P-NET Program Channel. They provide
equivalent name functions, as described in the standard for the Program Channel.

502 086 07

Manual VIGO 59/108

5 Monitor

The Monitor program is a service tool for monitoring fieldbus variables, and to enable pa-
rameters to be configured within Fieldbus based control systems. The Monitor can be used
to both display and modify the value of variables. Variables are usually identified using a
globally recognized name, called the Physical Identifier (PhysId).

The Monitor can display the value of many variables at the same time, each one allocated
to a separate line, these lines can then be grouped on different tab sheets.

Specified variables can be located within different projects, nets and nodes. Normally, each
line is divided into three fields: [Physical Identifier], [Type] and [Data]. An optional [Offset]
field can also be shown. The width of the [Physical Identifier], [Offset] and [Data] fields, can
be adjusted by dragging the vertical line shown between the [Type] and [Data] fields, and
by re-sizing the window.

Starting the Monitor from within VIGO will automatically create a monitorline holding the se-
lected PhysID.

The [Physical Identifier] field is used to define which variable to display. Double clicking a
line in this field will cause it to change into an editing field, which also includes a <MIB> but-
ton. The contents of the Physical Identifier field can now be keyed in manually, or alterna-
tively, by pressing the <MIB> button. The required variable can now be selected from the
project structure. The format of a Physical Identifier entry would normally consist of a "pro-
ject name" followed by a colon, then the rest of the identifier, which includes the node name
and the variable name. For example: "Test:UPI1.SERVICE.WDTIMER". The project identi-
fier and the colon can in fact be omitted. It is then assumed that the Default Project, as pre-
viously specified, will act as the project identifier.

Manual input of a Softwire number is performed by formatting the Physical Identifier as:
‘Project identifier:Node identifier.Softwire number’. For example, ‘SampleProject:UPI1.18’
(or UPI1.$12 in Hex).

502 086 07

60/108 VIGO Manual

The MIB is used to convert the Physical Identifier into the actual "address", required to ac-
cess the variable.

5.1 The Type Field
Under normal circumstances, the MIB also returns the data type of the variable in question,
which is then automatically inserted into the [Type] field. In case the Physical Identifier is
inserted manually as a Softwire number, the data type must also be set manually. Clicking
the right mouse button from within the [Type] field will produce a list of available data types
for display. Clicking on one of these will insert the data type name into the [Type] field, and
the displayed variable will be formatted as such.

If the Physical Identifier specifies an Array or Record, the Type field shows
"-----", because it is not possible to present the complete value of a complex
variable.
When accessing a variable using a Softwire number, or part of a complex
variable using an offset, the data type must be selected manually. As previ-
ously described, this is done by clicking the right mouse button within the
[Type] field, and then selecting the appropriate data type. If the selected
data type differs from the data type specified in the MIB, it is shown en-
closed in brackets, e.g. [LongInt], and the readings seen may be unpredict-
able. By selecting “Default”, the type specified by the MIB is used.

5.2 The Offset Field
The value within this optional field is always assumed to be zero, for variables of simple
data type. For variables of complex type (array or records), the [Offset] field can be used to
manually define an offset, in bytes, to a sub element of the variable. Double clicking within
the [Offset] field, enables the offset value to be changed from zero. However, this means
that the Physical Identifier no longer fully represents the data value displayed.

5.3 The Data Field
This field displays the value of the variable, pointed to by the [Physical Identi-
fier] field. A check box in the field is used to enable automatic updating of data
values. The refresh rate can be specified in the <Options> menu. The default
rate is two updates per second.

The [Data] fields Edit mode is activated by double clicking on the field. The [edit] field will in
edit mode change it’s appearance. In edit mode the user can manually change the value of
the selected data.

The readout format can be selected to be in Decimal (default), Hexadecimal or Binary, for
the following data types: Byte, Integer, Long Integer and Word. The number of digits dis-
played after the decimal point can be selected for variables of the Real data type. The se-
lection can be made by using the right mouse button, when the cursor is pointing to a par-
ticular value in the [Data] field.

502 086 07

Manual VIGO 61/108

If an error message or any other information relating to a variable is received, these are
appended in the [Data] field. As default, only error messages are shown. Display of addi-
tional information can be enabled from the <Options> menu.

5.4 Main menu

5.4.1 File

The <File> menu contains the following items, which all relate to Monitor
screen layouts.

<File | New Page>

The New Page function creates a new tab sheet with five empty monitor
lines. The <Edit | Insert> menu item is used to add extra lines to the active
tab sheet.

<File | Delete Page>
The Delete Page function removes the currently selected tab sheet.

<File | Clear Monitor>
The Clear Monitor function will remove all pages and create a new page containing 5 empty
lines.

<File | Open>
The Open function reloads a monitor layout from a previously saved file. The included iden-
tifiers will automatically be converted into the 'address' needed to access the variable. This
is performed using the contents of the MIB, and will therefore reflect any changes that have
been made to the MIB since the last screen save.

<File | Save>
The Save function will store the screen layout parameters together with the list of included
Identifiers in a file with the file extension ‘mon’.

<File | Save as>
The Save as function provides an opportunity to store the screen layout in a file with user-
defined path and name. The file is saved with the file extension ‘mon’.

<File | Exit>
Exit closes the program. When the Monitor is closed, the current Monitor layout is auto-
matically saved, as the default screen layout. Next time the Monitor is started, the default
Monitor layout is automatically loaded.

502 086 07

62/108 VIGO Manual

5.4.2 Edit

The edit functions are used to customize a screen layout. They apply to
the currently selected line. A monitor line can be selected by clicking on
the line with the left-hand mouse button. Selected lines are displayed with
all text as bold. It is possible to select multiple lines by following one of the
tree procedures described below.

• Pressing the <Ctrl> button and clicking on the lines in question enables the selec-

tion of multiple lines. The lines will on selection be displayed as lowered.

• The selection of continuous lines is possible when a line is selected and the <Shift>
button is pressed followed by a selection of another line. This will cause all of the
lines between the two selected lines to be selected. The lines will on selection be
displayed as lowered.

• Pressing <Ctrl>+<a> selects all Monitor lines on the currently selected tab sheet.

Notice that changing the active tab sheet will cause all selected Monitor lines to be unse-
lected.

<Edit | Insert>
The Insert function will insert an empty Monitor line over the selected line placed nearest to
the top of the active tab sheet. If no line is selected the new line will be placed at the top of
the active tab sheet.

<Edit | Delete>
The Delete function will delete the selected Monitor lines.

<Edit | Cut>
The Cut function will delete the selected Monitor lines, and save them on the clipboard.

<Edit | Copy>
The Copy function will save a copy of the selected Monitor lines on the clipboard.

<Edit | Paste>
The Paste function will insert monitor lines, previously saved on the clipboard, above the
selected line.

<Edit | Replace text>
This menu starts a search and editing form, that enables the searching and replacement of
text in the [PhysID] fields.

502 086 07

Manual VIGO 63/108

5.4.3 Options

The default fields in a Monitor line are: Physical Identifier, Type and
Data. However, it is possible to customise the lines using the Options
menu.

The option menu can also be made available, by clicking with the right
mouse button on the Monitor lines and selecting the desired menu or
submenu item from the popup menu. The choices in the popup menu
will only influence the currently selected Monitor line.

<Options | Rename Page>
Rename Page is used to change the caption on the tabsheet.

<Options | Show Offset>
Show offset is used to enable the Offset field. The Offset field is disabled as default.

<Options | Show types>
Show types is used to enable the Type field. The Type field is enabled as default.

<Options | Enable Info>
When reading or writing to a variable, an error message and/or other information relating to
the variable, may be received from the node.
An error message is always appended to the Data field. Activating the <Enable info> func-
tion, will also append any additional information to the Data field.

<Options | Refresh rate>
The refresh rate is defined as the number of full screen (all Monitor lines) updates per sec-
ond. The refresh rate has a default value of 2 Hz, meaning that all values in the monitor
lines will be updated twice each second. The refresh rate can be set to one of the following
values: No Update, 1, 2, 5 and 10 Hz. Selecting a low frequency, will reduce data traffic on
the bus.

<Options | Field Colors>
The menu item contains a sub menu that allows the user to change the colors of each field
type.

<Options | Font>
The menu item allows the user to change the font selection in the Monitor lines.

<Options | Default Settings>
The menu item returns the Monitor lines to the default settings.

5.4.4 Help

Guidance in using Monitor is available from the Help menu. It is also possible to obtain
guidance on a specific subject by pressing <F1> after selecting an item in the Monitor.

502 086 07

64/108 VIGO Manual

6 P-NET Tools

A number of tools that are specifically used in conjunction with the P-NET Fieldbus, are
available in the VIGO program package. Some of the more general-purpose tools that can
be used with all P-NET standard modules are described in this chapter.

6.1 Set P-NET Node Address
Each P-NET node that is located within a
single bus segment must be configured
with a unique node address. P-NET
nodes are normally shipped from a manu-
facturer with the node address set to zero.
Since node address zero is not permitted
to be used for normal communication, the
connection of such a node will not inter-
fere with any of the other nodes already
running on the network. When a new
node is connected to the network, the de-
sired node address can be set, by using a
special feature of P-NET. Sending a
broadcast message to all nodes, consist-
ing of the new node address, together
with the serial number of the node in
question performs this.

The purpose of this program, is to enable the setting of the node address within a physical
node, by means of using it’s serial number.

This program is launched from the MIB browser MIBOCX, by selecting it from the right
mouse button menu, when a Node is highlighted.

Selecting a different Node in the MIBOCX (by activating the [MIB] button), will automatically
update the [Node Identifier] in the Set P-NET Node Address program window, and will dis-
play data about that node.

If the node is recognised as a P-NET master module, a [No. Of Masters] field is also
shown. This indicates the maximum number of masters currently allowed to be connected
to the network segment.

The node in question must be included in the project description in the MIB, and it’s proper-
ties must also be set correctly, including the desired node address.

502 086 07

Manual VIGO 65/108

When the program is opened and a node is selected, the following four situations can oc-
cur:

1: If the node specified in the [Node-Identifier] field cannot be found at the node address as
specified in the MIB, the serial number of the should be keyed in, and then the <Apply> but-
ton should be pressed. The function of the <Apply> button is to send a broadcast message
to all nodes, commanding the node with serial number xxxxxxx, to set its node address to
the attached value. If a node with the specified serial number is found, the [Node info] for
the module in question will be shown.
If contact with the node cannot be established, the [Node info] field will display "No contact
with Node". If this is the case, it should be checked that the serial number of the module is
correct, and that the module has been correctly connected to the network.

2: A node is found on the network, and the serial number and the [Node info] is automati-
cally displayed for that node. If this information corresponds to what is required, as speci-
fied in the MIB, the communication parameters for the node are correctly set up, and no fur-
ther action needs to be taken.

3: A node is found, and the [Node info] is shown, but the node is not the expected node as
specified in the MIB. This indicates that the node has been configured with the wrong node
address, and it must be removed to ensure future communication integrity. By pressing the
<Remove> button, the node is removed from the network as far as communication is con-
cerned. This is done by setting the node address to zero. The [Node info] will now display
"No contact with Node" and situation 1 will now apply.

4: A node is found, and the [Node info] is shown, but the node is not the expected node as
specified in the MIB, or random communication errors occur. This could mean that two or
more nodes are configured for the same node address, and these nodes should be re-
moved and re-configured to maintain communication integrity.

Guidance for selecting Node Address and No of Masters for a Project
The P-NET node address can be in the range from 1 to 125. The No. of Masters can be in
the range from 1 to 32. The lower numbers are reserved for Master modules. Node ad-
dresses for Slaves must always be higher than the No. of Masters.
If for example a project consists of 5 Master modules and 15 Slave modules, the No. of
Masters and Node Addresses could be selected in the following way:

 No of Masters = 6 (one master number is reserved for future extension)
 Node Address for the Master modules are then in the range from 1 to 6
 Node Address for the Slave modules are then in the range from 7 to 125

6.1.1 Help

Help on the use of the Set P-NET Node Address, is provided from the <Help> menu. The
help file consists mainly of parts of this manual.

502 086 07

66/108 VIGO Manual

6.2 Channel Configuration
The purpose of this utility program is to enable a node channel to be configured, main-
tained and monitored. It is launched from the MIBOCX using the right mouse button menu,
when a channel is selected.

The Channel Configuration program is designed to recognise a number of standardised
channels.

This provides the user
with a convenient way
of configuring the vari-
ous channels, which
make up a module.
The Channel configura-
tion window is divided
into three sections. The
upper section contains
the [PhysId] field,
which displays the
identity of the Channel.
The [Write enable]
check box is common
for the entire node and
must be checked, to al-
low the contents of
configuration registers
to be changed.

The middle section consists of a number of tab sheets, each containing a formatted view of
the various configuration registers, enabling ease of amendment or monitoring.

The lower section provides a display of real-time values, which are specific to the selected
channel type. Although the values shown depend on serviceable communication and the
state of the current process associated with the channel, many can be amended locally, us-
ing the PC keyboard or mouse, e.g. resetting a counter to zero, or changing the state of a
digital output.

The ability to display a particular channel configuration screen, depends on that channel
type being included and selected within a node already defined in the MIB project file.
Screens are available for the following Channel types: Service, Digital I/O, AnalogIn, PID,
AnalogOut, Weight, Communication and Program Channel.

502 086 07

Manual VIGO 67/108

6.3 Program Download
The purpose of this program is to provide the means to download program code, i.e. Proc-
ess-Pascal code or Calculator Assembler code. The code can be downloaded to all mod-
ules supporting a P-NET standard Program Channel, such as the PD600 series and the
PD5000 series of controllers from PROCES-DATA A/S. Program Download is called from
the MIBOCX using the right mouse button menu, when a Program Channel is selected.1

The Program
Download utility also
supports the download-
ing of Calculator pro-
grams, to other mod-
ules supporting the
P-NET standard Pro-
gram Channel, such as
the PD3120 module.
When this program has
been launched via the
MIBOCX, the Channel
identifier is automati-
cally inserted. Pressing
the [MIB] button and
selecting a new Pro-
gram Channel can
change the identity of a
Channel.
A File browser can be opened for selecting a Code file by pressing the [FILE] button The
node to which a program is to be downloaded, must first be defined in the MIB, before a
download can proceed.

Clicking the [Details] button opens a window, from where the selected program can be
stopped, started, killed etc. In addition, the Actual size, Max size, Code type, and Version of
the program in the selected library can be seen.

6.3.1 Channel

The [Channel] combo box is used to insert the name of the channel, to which a program is
to be downloaded. The selected channel must be a standard Program Channel, of object
type 11. The object type is defined in the MIB. If the selected channel is not of object type
11, a message box will display "Error in PhysId name".

A channel identifier can be selected using four alternative methods. When this program has
been launched via the MIBOCX, the channel identifier is automatically inserted. The chan-
nel Identifier can also be inserted from the MIB by clicking the [MIB] button, and then dou-
ble clicking on a channel name within the MIBOCX. It can be included as a start up pa-
rameter for Program Download, or it can be directly keyed in into the combo box.

502 086 07

68/108 VIGO Manual

When a new channel identifier is inserted, it will always become the highlighted item in the
[Channel] combo box list. The selected item will be inserted at the top of the list. If the se-
lected channel was not previously included in the list and the list is full, the oldest channel
identifier will be deleted. Once a channel identifier is included in the combo box, it can be
easily selected from the list, which can hold up to 6 channel identifiers.

6.3.2 Code file

The [Code file] combo box is used to specify the file to be downloaded. The extension is
normally ".COD" for e.g. Process-Pascal programs and Calculator programs, or " CXE " for
calculator programs developed under Windows 3.11. The selected code file must contain
the kind of program code expected by the selected channel. The code type is checked prior
to the program being downloaded.

A code file name can be inserted in the [Code file] combo box using three methods. The
code file name can be included as a start up parameter for Program Download. Alterna-
tively, it can be selected from the Open file dialog, by clicking the [FILE] button, or it can be
directly keyed in into the combo box.

When a new file name is inserted, it will always become the highlighted item in the [Code
file] combo box list. The selected item will be inserted at the top of the list. If the selected
file was not previously included in the list and the list is full, the oldest file name will be de-
leted. Once a file name is included in the combo box, it can be easily selected from the list,
which can hold up to 6 file names.

6.3.3 Autostart after reset

The [Autostart after reset] check box, defines how the selected program will behave, follow-
ing a reset being applied to the node holding the program. If [Autostart] is checked, the se-
lected program will perform an auto start after a reset. If it is not, the selected program will
be put in the Idle state after a reset. The check box reflects the state of ChCon-
fig.EnableBit[0] in the Program Channel.

Some node types can hold several programs within a library. With PD controllers, these
programs can be stored in different memory types. The list box adjacent to [Autostart after
reset], defines which program will be started, if [Autostart after reset] is checked.

The list box reflects the value of ChConfig.Ref_A in the Program Channel. The state of the
[Autostart] check box and list box can only be changed, if [Write enable] is checked.

6.3.4 Selected library

The selection in the [Library] list box defines, to which library domain the program is to be
downloaded. The list shows the possible choices for the selected channel. The possible
values are read from the selected channel, in the variable called MemoryInfo.

502 086 07

Manual VIGO 69/108

The [Name] and [State] fields in the [Library] panel show the name and state of the se-
lected program in the library. The library list can also be used to monitor the names and
states of other programs in the library. Library State can take the following values:

0: Non-existent
1: Loading
2: Ready
3: In-use
4: Complete
5: Incomplete
14: Deleting

The [Selected library] list box reflects the value of LibraryStatus.LibraryIndex in the Pro-
gram Channel. When a new value is selected, it is stored in LibraryControl.LibraryIndex in
the Program Channel.

6.3.5 Selected program

The [Selected program] list box is used to select a program. The list shows the possible
values for the selected channel. The possible values are read in the selected channel, in
the variable called MemoryInfo.

If a program is already running when selecting a new program, the running program will be
stopped and killed, and the new program will be selected, which will be put into the Idle
state.

After selecting a program, the program can be started by pressing the <Start> button.

The [Name] and [State] fields in the Program panel show the name and state of the se-
lected program. Program state can take the following values:

0: Non-selected
1: Unrunable
2: Idle
3: Running
4: Stopped
5: Starting
6: Stopping
7: Resuming
8: Resetting

The [Selected program] list box reflects the value of ProgramStatus.SelectedProgram in the
Program Channel. When a new value is selected, it is stored in ProgramCon-
trol.ProgramToSelect.

6.3.6 Download button

Before downloading, a channel must be specified, a code file and a library must be se-
lected, and [Write enable] must be checked. Clicking the <Download> button starts the
downloading procedure, for the code file selected in the [Code file] combo box, to the chan-
nel and library defined in the [Channel] combo box and the [Selected library] list box.

502 086 07

70/108 VIGO Manual

If the download parameters specify a memory area that is already in use, by being in a
state of e.g. running or selected, a message box showing “Selected library in use ! Con-
tinue ?” will appear. If <Yes> is selected, the program that is currently running or selected,
will be stopped and killed, and the new program will be downloaded.

6.3.7 Start button

Clicking the <Start> button will start the Selected program. Clicking the [Start] button only
has an effect, if a program is selected, and the program is in the Idle state.

6.3.8 Write enable

The [Write enable] check box enables the values in ChConfig of the selected channel to be
changed, using the values available in the [Autostart after reset in] list box. [Write enable]
must also be checked to download programs.
If [Write enable] is not checked, [Autostart after reset] and [Download] are disabled, and
greyed out.

6.3.9 Details

Pressing the [Details] button opens a window with
more detailed information about the selected channel.
The [Program] field in the Download details window
provides buttons to [Start], [Stop], [Resume], [Reset],
[Kill] and [Unselect] the program defined in the [Se-
lected program] list box.

The [Library] field in the Download details window,
shows [Actual size], [Max size], [Code type] and [Ver-
sion] of the program defined in the [Selected library]
list box. The [Library] field also includes a <Terminate>
button, which will terminate downloading to the se-
lected library, and a <Delete> button, which will delete
the program in the selected library.

502 086 07

Manual VIGO 71/108

6.3.10 Starting the Download Utility from a shortcut

Program Download is normally started from within the MIBOCX, via the right mouse button
menu, when a Program Channel of object type 11 is selected. If this method is used, the
identity of the selected Program Channel will be automatically inserted into the <Channel>
combo box.
Program Download may also be started up using a previously prepared shortcut. Using this
method, it is also possible to include two parameters. The first parameter is the PhysId of
the channel to which the program code is to be downloaded. The value of this parameter
will then be automatically inserted in the [Channel] combo box. The second parameter is
the name of the code file to be downloaded. The value of this parameter will be automati-
cally inserted in the [Code file] combo box. The parameters can be included by selecting
Properties of the shortcut icon and appending them to the command line.

When the Program Download tool is closed, the contents of the [Channel] and [Code file]
combo boxes are saved in a file called {PD}PROGRAMDOWNLOAD.CFG. This file is
placed in the current folder, which would typically be the VIGO folder. When Program
Download is started again, the contents of the 2 combo boxes will be restored, if no start up
parameters has been given.

6.3.11 PD 5000 Controller

A PD 5000 controller has two Program Channels, OPSYSCH and PPPROGCH.

OPSYSCH holds the controllers’ operating system, and PPPROGCH holds a Process-
Pascal program.

These two programs are inter-dependent. If the Process-Pascal program is running, a new
operating system cannot be downloaded.

If a Process-Pascal program is present in the Flash library, a new operating system cannot
be downloaded to Flash, because the operating system is located at the beginning of the
Flash memory area, and the Process-Pascal program is loaded immediately after it.

The situations described above are just two of the aspects, which the Program Download
utility automatically monitors, to ensure download integrity. Should any other prohibited
situations occur, the utility would provide any necessary warnings, before a program is
automatically stopped or deleted.

502 086 07

72/108 VIGO Manual

7 Tools for PROCES-DATA modules

The tools described in this chapter relate only to modules manufactured by PROCES-
DATA A/S.

7.1 PD 3000 / PD 4000 Download
The purpose of this program is to download Process-Pascal code to modules not originally
designed to support the P-NET standard Program Channel. This applies to the PD 3000
and PD 4000 series of controllers with older operating systems. The utility can be called
from the MIBOCX, using the right mouse button menu, when the appropriate node is se-
lected.

The program is downloaded to the controller specified by the identifier inserted in the
[Download to controller] edit field. After a program has been downloaded, it can be started
by clicking the <Start> button.

If the selected node is a PD 4000 controller, and it is required to store the code in flash
memory, the Process-Pascal program must be downloaded together with an operating sys-
tem. The name of the file holding the operating system is inserted in the [Operating system
code file] edit field.

When a controller, a Process-Pascal code file, and possibly an operating system code file,
have been specified, the program can be downloaded, by clicking the <Download> button.

7.1.1 Download to controller

The [Download to controller] edit field is used to insert the name of the controller to which a
program is to be downloaded. The selected controller must be of type PD 3000 or PD 4000.

A controller identifier can be inserted using four alternative methods. When this program
has been launched via the MIBOCX, the controller identifier is automatically inserted. The
controller name can also be included as a start up parameter. It can be inserted from the
MIB, by clicking the <MIB> button and then double clicking on a controller name within the
MIBOCX, or it can be directly keyed in into the edit field.

502 086 07

Manual VIGO 73/108

The integrity of the controller identifier is NOT checked, until the <Download> button or the
<Start> button is clicked. When either of these actions occurs, a test will establish whether
the controller is of the correct type and version. The version must be 2.00 or later.

7.1.2 Process-Pascal code file

The [Process-Pascal code file] edit field is used to identify the file to be downloaded, which
contains the Process-Pascal program code. The selected file must be a Process-Pascal
".COD" file, generated by the Process-Pascal compiler version 2.00 or later.

A code file name can be inserted using three alternative methods. The code file name can
be included as a start up parameter when launching the PD 3000 / PD 4000 Download pro-
gram. It can be selected from an Open file dialog, by clicking the <FILE> button and then
opening the file, or it can be directly keyed in into the edit field. The integrity of the name,
type and version of the selected file is not checked, until the <Download> button is clicked.

7.1.3 Operating system code file

The [Operating system code file] edit field is used to specify the file to be downloaded,
which contains the Operating system. This file is only required when a Process-Pascal pro-
gram is to be downloaded to FLASH memory, in a PD 4000 controller.

The selected file must contain the PD 4000 operating system, as a ".COD" file, version 2.00
or later, (NOT a ".HEX " or ".EP0" file), as provided by PROCES-DATA A/S. For example,
the file might be called "4000v30.COD".

A operating system code file name can be inserted using three alternative methods. The
code file name can be included as a start up parameter when launching the PD 3000 / PD
4000 Download program. It can be selected from an Open file dialog, by clicking the
<FILE> button and then opening the file, or it can be directly keyed in into the edit field. The
integrity of the name, type and version of the selected file is not checked, until the
<Download> button is clicked.

502 086 07

74/108 VIGO Manual

7.1.4 Download to

The <Download to> radio buttons define to which memory type the program is to be
downloaded. If the controller is a PD 3000, the program can only be downloaded to “RAM”.
If the controller is a PD 4000, the program can be downloaded to either “RAM” or “FLASH”.

If <FLASH> is selected, the name of a file containing the PD 4000 operating system must
be inserted in the [Operating system code file] edit field, before clicking the <Download>
button. The correct selection of <RAM> or <FLASH> options is not checked, until the
<Download> button is clicked.

Clicking the <Download> button commences the process of downloading the code file(s)
specified in the code file edit field(s), to the selected controller.
Before a program is actually downloaded, the controller is stopped and reset.

If <FLASH> is selected, the “FLASH” memory is first cleared, which takes about 20 sec-
onds. The operating system is then downloaded. Finally, the Process-Pascal program is
downloaded.
Once a program has been downloaded, it can be started by clicking the <Start> button.

The state of the <Download to> radio buttons should not be changed during the period be-
tween download and start.

7.1.5 Starting PD 3000 / PD 4000 Download

When the PD 3000 / PD 4000 Download utility has been started from the MIBOCX, the
contents of the [Download to controller] edit field are automatically inserted.

PD 3000 / PD 4000 Download may also be started by setting up a shortcut. In this situation,
it is also possible to transfer 4 command line parameters, by amending the shortcuts prop-
erties. The first parameter is the controller identity, to which the program is to be
downloaded. The value of this parameter will be inserted in the [Download to controller] edit
field. The second parameter is the name of the Process-Pascal code file, and this will be
inserted in the [Process-Pascal code file] edit field. The third parameter is the name of the
Operating system code file, which will be inserted in the [Operating system code file] edit
field. The fourth parameter defines the state of the <Download to> radio buttons. If the
value of this parameter is “RAM”, the <RAM> button will be checked, otherwise the
<FLASH> button will be checked.

When the PD 3000 / PD 4000 Download program is closed down, the contents of the
[Download to Controller], [Process-Pascal code file] and [Operating system code file] edit
fields, and the state of the <Download to> radio buttons, are all saved in a file called
{PD}PDDOWNLOAD.CFG. This file would normally be located in the current folder, e.g.
VIGO. When the PD 3000 / PD 4000 Download program is started again, these values are
restored, if no start up parameters have been specified.

502 086 07

Manual VIGO 75/108

7.2 Calculator Assembler

The Calculator Assembler provides all the necessary services for a programmer to design,
edit, assemble and download programs to calculator channels in P-NET modules, from a
PC. The Calculator Assembler is an integrated program with an editor, an assembler, a de-
bugger and a loader for P-NET. Calculator programs are written as assembler instructions
in text files. By using the editor, the source text is edited and saved. By using the assem-
bler, the source text is assembled to generate the calculator instructions. These instructions
are downloaded to the Calculator channel, and the program can then be started. It is possi-
ble to debug the downloaded program by single steps or a break point.

An example of a Calculator Program with some typical instructions.

 Move #D,CR1 ; Let CR1 point out the pulse
 ; processor channel in a PD 3221
Start: Move #0,IR1 ; First element
Loop: Move CR1:#A[IR1], Acc ;Load pulse processor
 ;registers[elementNo]
 Add 100
 Move Acc, CR1:#A[IR1] ; Store back incremented val ue
 Inc IR1 ; Next element
 Move IR1, Acc ; Load IR1 into Acc
 Comp Acc > 15 ; Is last element treated?
 Jump.False Loop ; No: then repeat loop
Finish: . ; Yes: then
 .
 .
 Jump Start ; Last instruction must be an
 ;unconditional jump to a label
End ; End of program

502 086 07

76/108 VIGO Manual

7.2.1 User Interface

The program's main window contains a menu bar at the top and a status line at the bottom.
A file can be opened for editing and assembling. Furthermore, the program has a <MIB>
button used to select the destination module for download and debugging.

In the following paragraphs, the different parts of the program are covered in detail sepa-
rately.

7.2.2 Editing a file

The editor is used to edit a calculator program. Files can be opened by the 'File | Open...'
command in the menu. Files are also saved and printed from the File menu. Calculator as-
sembler source files have “CAS” as default extension.

A new (blank) file window corresponding to a new assembler file can be created with the
'File | New' command.

The standard edit commands (listed in the Edit menu) for copy, cut and paste of a selected
text are available in the editor. Text can be exchanged to and from the Windows clipboard.

502 086 07

Manual VIGO 77/108

The editor can undo the last cut command. Marked text will be replaced when new text is
entered. The search and replace operations are listed in the Search Menu.

In the status line the cursor's position is shown. It is also indicated if the file has been mod-
ified since the last time it was saved.

Note that when the register window (used when debugging) is shown, the content of the
edit window is locked. If changes have to be made, close the register window, make the
changes, assemble the program and download it again. Then reopen the register window
to see the effect of the changes.

7.2.3 Assembling a program

The assembling of a source file is started from the Assemble Menu. A status dialogue dis-
plays the line number and size of the generated code during the assembling.

When an error is found, a dialogue will pop up to inform the user about the error. After
pressing the OK button in the status dialogue, the assembling process continues. Pressing
the cancel button in the status dialogue can interrupt the assembling process.

During the assembling process a debug (*.deb) file is generated. It contains a list of line
numbers, instruction addresses and label names. The list is used for debugging.
After a successful assembling (No errors found), it is possible to download the generated
code to a calculator channel. The download command in the main menu is the means to do
that.

Using the Assemble menu, generated code can be saved in a file. The 'Write to INC file'
command in the 'Assemble' menu, will create an include file for Process-Pascal. The 'Save
to COD file' command will save to a file on disk, ready to be downloaded to a calculator
channel.

*.inc The generated calculator instructions as Process-Pascal source text. May be

included in a Process Pascal program (ASCII).
*.cod The generated calculator instructions in a binary format.

7.2.4 Downloading a program

For downloading of calculator programs, a Calculator Channel must be selected as destina-
tion. A Calculator Channel is a channel with a physical ID ending with '”CALCULATOR”.
To select a calculator channel, activate the <MIB> button at the top left of the screen. This
changes the edit window into a MIB Viewer. Use the mouse to expand the MIB structure to
find the desired Calculator Channel. When the calculator channel is highlighted, click on the
<MIB> button again or double click the channel. This will close the MIB Viewer and the edit
window reappears. The selected channel is now shown to the right of the <MIB> button.

When the desired destination channel is shown, select the <Download> menu. This will
start the standard P-NET downloader application. For further information on the download
program, refer to the documentation for the downloader.

502 086 07

78/108 VIGO Manual

7.2.5 Debugging a program

The Calculator Assembler supports interactive debugging of a Calculator Program
downloaded to a Calculator Channel. The debugger makes it possible to single step
through the calculator instructions or to set a break point.

After an assembling of a source text, the generated codes must be downloaded to a Calcu-
lator Channel, and the module must be reset to reinitialise the calculator. The debugger is
started by selecting <Register Window> in the main menu. When debugging starts, the reg-
ister window will show the calculator's registers. It is not possible to edit the program source
when the register window is shown.

The user can single step through the program, by pressing a key <F7>. To set a break
point, the user places the cursor on the line containing the instruction at which a stop is re-
quired, and then press the <F4> key. The Calculator then starts, and runs until the break
point is reached. When the execution stops the Calculator's internal registers can be in-
spected in the register window. The register values can also be changed. To restart the
Calculator Program from the first instruction, the <F2> key can be pressed.

The register window also contains three buttons, which acts as shortcuts to the [Debug
Step], [Debug Goto cursor] and [Debug Reset] commands. The [Debug Reset] command
stops the calculator if it is running, and resets the calculator's instruction pointer to the first
program instruction. When the debugger is reset, has been single stepped or has reached
a breakpoint, the line containing the next instruction to be executed, is highlighted as
marked text.

7.2.6 Calculator programming

Details about the Calculator Programming, the calculator registers and the instruction set
are found in the Calculator Programming Manual “PD Calculator Assembler, ref. no. 502
061”.

7.2.7 Help

Online information about this program, is available by using the Help menu.

502 086 07

Manual VIGO 79/108

7.3 Calculator Download
The purpose of this program is to download Calculator code to modules not supporting the
standard P-NET Program Channel. It is used to download calculator program code to the
Calculator Channels included in the PD 3221 UPI and PD 3230 Weight modules produced
by PROCES-DATA A/S. It may be started from within the Calculator Assembler, or it can
be launched from the MIBOCX using the right mouse button menu, when a Calculator
Channel has been selected.
When a program has been downloaded, it can be started, by checking the <RunEnable>
option.

If this utility
program is cal-
led using the
right mouse
button menu,
the identity of
the Channel to
which the
download is to

be made, is automatically provided. The Channel identity can be changed, by pressing the
<MIB> button, and then selecting a new Calculator Channel. A File browser can be opened
for selecting a Code file, by pressing the <FILE> button. The node containing the Calculator
Channel must be defined in the MIB, before any Download procedure can be started.

The program is downloaded to the Calculator Channel, specified by the identifier inserted in
the [Download to channel] edit field. The name of the file holding the calculator code, is
specified in the [Calculator code file] edit field.

Before downloading, a channel must be specified, and a code file selected. The Calculator
Download program automatically controls the state of the WriteEnable flag in the Node.
Following a download, the WriteEnable state is set back to the value it had, before the start
of the download.

7.3.1 Download to channel

The [Download to channel] edit field is used to insert the identifier of the channel, to which
a Calculator Program is to be downloaded. The selected channel must be a Calculator
Channel in a PD 3221 UPI or PD 3230 Weight node. These channels have an object type
of 7.

502 086 07

80/108 VIGO Manual

A channel name can be inserted using four alternative methods. If this program is launched
using the right mouse button menu, the identity of the Channel is automatically inserted.
The channel name can also be included as a start up parameter. It can be selected from
the MIB, by clicking the <MIB> button and then double clicking on a channel name within
the MIBOCX, or it can be directly keyed into the edit field.

7.3.2 Calculator code file

The [Calculator code file] edit field is used to select the file containing the Calculator Pro-
gram to be downloaded. The selected file must be a calculator file, having an extension of
".COD", which has been generated by the Calculator Assembler produced by PROCES-
DATA A/S. However, Calculator Programs developed under Windows 3.11 may use the ex-
tension ".CXE".

A code file name can be inserted using three alternative methods. The code file name can
be included as a start up parameter. It can be selected from an <Open file> dialog, by click-
ing the <FILE> button and opening the required file, or it can be directly keyed into the edit
field.

Once a program has been downloaded, it can be started by checking [RunEnable].

7.3.3 RunEnable

The [RunEnable] check box reflects the state of the boolean variable RunEnable, in the se-
lected Calculator Channel. Whenever RunEnable is true, indicated by a tick in the check
box, the Calculator Program will be running. When the downloading of the program is com-
plete, RunEnable is automatically set to false, so that the calculator program doesn't start
until [RunEnable] is checked.

The RunEnable variable is stored in a memory type called RAMInitEEPROM. This means,
that there are in fact two variables, one in “RAM” and one in “EEPROM”. It is the state of
RunEnable in “RAM” that determines, whether the Calculator Program is running or not. It
is the state of RunEnable in “RAM” that is mirrored by the [RunEnable] check box.

After a reset of a UPI or Weight node, the state of RunEnable is copied from EEPROM to
RAM. If the state is “TRUE”, the Calculator Program will automatically start running.

The state of RunEnable in EEPROM can be set “True”, by clicking the <ON> button under
[Autostart after reset]. If RunEnable in RAM was “False”, it will be set “True” for a short pe-
riod, during this operation.

The state of RunEnable in EEPROM can be set “False” by clicking the <OFF> button under
[Autostart after reset]. If RunEnable in RAM was “True”, it will be set “False” for a short pe-
riod, during this operation.

7.3.4 Download

Clicking the <Download> button will begin the procedure of downloading the code file,
specified in the [Calculator code file] edit field, to the selected channel.

502 086 07

Manual VIGO 81/108

Before the program is downloaded, the Calculator is stopped, by setting [RunEnable] to
“False”. RunEnable remains “False”, so that the program doesn't start automatically after
downloading has been completed.

7.3.5 Reset node.

Clicking the <Reset node> button will reset the UPI or Weight node. The button is provided
as a convenient way to ensure that the calculator behaves, as it should, following a reset.
That is, whether it autostarts or not.

7.3.6 Starting the Calculator Download program

Calculator Download may be started from within the Calculator Assembler, or it may be
launched from within the MIBOCX, via the right mouse button menu, when the Calculator
Channel in a PD 3221 UPI or a PD 3230 Weight module has been selected. These Calcu-
lator Channels are of object type 7.

Calculator Download may also be started using a previously set up shortcut. In this case, it
is possible to include two command line parameters, by amending the shortcut properties.
The first parameter is the identity of channel, to which the program is to be downloaded.
The value of this parameter will be shown in the [Download to channel] edit field. The sec-
ond parameter is the name of the Calculator code file, and will be shown in the [Calculator
code file] edit field.
If Calculator Download is started from within the Calculator Assembler, these two parame-
ters are automatically transferred.

When the Calculator Download program is closed down, the contents of the Channel and
code file edit fields are saved in a file called {PD}CALCULATORDOWNLOAD.CFG. This
file is placed in the current folder, which is typically the VIGO folder. When Calculator
Download is started up again, these values are restored, if no new parameters have been
specified.

502 086 07

82/108 VIGO Manual

7.4 Screen Dump

The Screen Dump utility is used to up load screens displayed on P-NET controllers, manu-
factured by PROCES-DATA A/S. Once a picture has been up loaded, it can be printed out,
saved in a file, or transferred to the clipboard. The program is useful when creating docu-
mentation applicable to Process-Pascal application programs.

Screen Dump is able to up load display screens from PD 3010, PD 4000, PD 5010, PD
5015 and PD 5020 controllers. However, to obtain a picture from a PD 5020, which has a
larger screen, a special task and set of variables (VGALOAD) must be incorporated in the
Process-Pascal program in the controller.

Screen Dump can be started from the MIBOCX, using the right mouse button menu, when
a node of the following controller type is selected: PD 3010, PD 4000 or PD 5010, PD 5015
or PD 5020. These form one of the Object Types - 3000, 4000 or 5000.

502 086 07

Manual VIGO 83/108

If this procedure is used, the Controller Identifier will be automatically transferred to the
[Load picture from controller] edit field.

Screen Dump may also be started from a shortcut, in which case the controller identifier
may be transferred as a parameter.

When the identifier of a controller has been specified, the display screen can be up loaded
by pressing the <LOAD> button. After a picture has been loaded, it can be stored in a Win-
dows bitmap file ".BMP", by means of the <Save> or <Save as> menu items.

The picture can also be printed by means of the <Print> command in the <File> menu. If
required, the picture can be copied to the clipboard, and then imported into other programs,
such as Paintbrush, WordPerfect or Word.

The size and location of the Screen Dump window on the PC screen may be changed.
When the Screen Dump program is closed the actual size and location of the window is
saved, along with the controller identifier, and the name of the file last used. These values
are restored the next time Screen Dump is started. The controller identifier is not restored,
if Screen Dump is launched from within the MIBOCX or with a parameter.

7.4.1 Save / Save as

The Save / Save as dialogues can be called by clicking the <Save> or <Save as> toolbar
buttons, or from the <File> menu, or by pressing <Ctrl> + <S> on the keyboard.
If a file name has not yet been defined, this can be done using the file dialogue. Once a file
name has been chosen, it will be shown in the header of the Screen Dump window.
The file is saved as a Windows bitmap file, with the default extension ".BMP".

7.4.2 Print

A loaded screen can be directed to print from within the Screen Dump program, by means
of the Print dialogue. This dialogue is called by clicking the <Print> button, or from within
the <File> menu, or by pressing <Ctrl> + <P> on the keyboard.

7.4.3 Load

Once a controller identifier has been inserted into the controller edit field in the program
window, the current controller screen image can be up loaded by clicking the <LOAD> but-
ton.

Loading pictures from a PD 3010, PD 4000, PD 5010 or PD 5015 only takes a few sec-
onds. However, loading pictures from a PD 5020 can take up to several minutes. If the
loading of a picture from a PD 5020 is cancelled (by pressing the <Cancel> button), a new
picture load must not be initiated during the next 30 seconds.

7.4.4 Copy to clipboard

Once a picture is loaded, it can be transferred to the standard Windows clipboard. From
here, it can be imported into other Windows programs. The loaded picture is copied to the

502 086 07

84/108 VIGO Manual

clipboard by pressing the <Copy to clipboard> button, or from the <Edit> menu, or by
pressing <Ctrl> + <C> on the keyboard.

7.4.5 Load picture from controller

The [Load picture from controller] edit field is used to insert the identifier of the controller
holding the screen image to be up loaded.

The selected controller must be of type PD 3010, PD 4000, PD 5010, PD 5015 or PD 5020.
The Controller Identifier can be inserted using four alternative methods. If this program is
launched using the right mouse button menu, the identity of the controller is automatically
inserted. It can also be inserted using the MIB, by clicking the <MIB> button, and then dou-
ble clicking on the required Controller Identifier within the MIBOCX. The Controller Identifier
can also be inserted during Screen Dump start up, by using a saved parameter, or it can be
directly keyed in into the edit field.

502 086 07

Manual VIGO 85/108

7.5 MapToMIB

The MapToMIB program is a conversion utility used to convert MAP files to SMB files. This
utility is only required for programs compiled by Process-Pascal compiler versions prior to
4.00.
A MAP file is generated by older versions of the Process-Pascal compiler, and contains an
ASCII text description of the variable names and their types, as declared in a Process-
Pascal program.

The SMB file (produced by the MapToMIB program), is a binary representation of the same
information, but in a format that can be read by the MIB Edit program. SMB is short for
SubMIB.

A SMB file is used to update or create a new Node type in the MIB database.

Using the MapToMIB program

The following section describes the functionality of the menus and buttons in the program
window. For a detailed description of how to create or update a Type in the MIB database,
refer to 'Step-by-step Instructions'

[File List]
The [File List] contains a list of MAP files for selection. These are the MAP files that are to
be converted by the MapToMIB program. To add or remove files, use the <File | Open>
and <File | Clear File List> menu commands.

The program can either convert one file or all the files in the [File List] (<File | Make> or
<File | Make All>). Clicking the down arrow to the left of the [File List], and then clicking the
filename can select a single file.

[Result]
This field contains a message indicating the result of a conversion, e.g. an error message.

<Make SMB File>
Pressing this button will convert the selected MAP file into a SMB file. This is the same as
selecting <File | Make> in the menu.

502 086 07

86/108 VIGO Manual

<Exit>
Pressing this button will terminate the program.
<File | Open>
The <File | Open> command will show an open-dialog box. The selected
file will be added to the [File List].

<File | Clear File List>
This command clears the [File List].

<File | Open>
The <File | Open> command will show an open-dialog box. The selected file will be added
to the [File List].

<File | Clear File List>
This command clears the [File List].

<File | Make>
The <File | Make> command will convert the selected MAP file in the [File List] into a SMB
file, which will be placed in the same folder as the MAP file. This is the same as clicking the
<Make SMB File> button.

<File | Make All>
All the MAP files in the [File List] will be converted to SMB files, and will be placed in the
same folder as the MAP files

<File | Exit>
This command terminates the program.

<File | About>
Selecting this command will show an About box, stating the program name and the current
version.

Step-by-step Instructions
The following procedures should be used to update or create a node Type in the MIB data-
base, based on the variables and types declared in a Process-Pascal program.

1. Generate a MAP file with the Process-Pascal compiler.

2. Start the MapToMIB program. Add the MAP file to the [File List] by using the

<File | Open> command. Ensure that the MAP file is selected in the [File List]. If
it is not, select it by clicking the down arrow in the [File List] and then clicking
the filename.

502 086 07

Manual VIGO 87/108

Note, that the contents of the [File List] are preserved between each session of the Map-
ToMIB program, so once a file has been added, it will remain there until <File | Clear File
List> is selected.

3. Convert the MAP file into a SMB file by clicking the <Make SMB File> button. If

no errors occur, terminate the MapToMIB program by clicking the <Exit> button.

4. Select the [MIB Edit] tab and select <View | Show Types> in the menu. This

should reveal all the Types (red icons) currently defined in the MIB database.

5. If it is a new Type, it should be created as described in this section. If it is an ex-

isting type that is to be updated, the following steps (5.a to 5.e) should be
skipped.

a. Right click the project icon (e.g. SampleProject) and select New from the

menu.

b. Ensure that <Add New as | Sub Element> is selected.

c. Select “Node Type” as [New Kind].

d. Key in a Type name for the new node in the [New Name] field.

e. Press the <OK> button.

6. Right click the new type and select <Update Type> from the pop up menu. This

will show an Open File Dialog box. Select the SMB file created by the Map-
ToMIB program.

The type is now updated / created

7. If the node is a PD 3000 or a PD 4000 Controller, the following steps (7.1a to

7.1d) should be performed:

1a. Right click the new node type and select <Properties> from the pop up
menu.
The Properties window will now open.

1b. In the Properties window select the [Type Info] tab and enter the following

values:

Capabilities: 130
Object Type 3000 or 4000

1c. Close the Properties window.

1d. Select <View | Show Nodes/Virtual Names> in the [MIB Edit] window.

502 086 07

88/108 VIGO Manual

If the node is a PD 5000 Controller, the following steps (7.2a to 7.2f) should be performed:

2a. Right click the new node type and select <Properties> from the pop up
menu.
The Properties window will now open.

2b. In the Properties window select the [Type Info] tab and enter the following

values:

Capabilities: 32
Object Type 5000

2c. Expand the node-tree in the [MIB Edit] tab window by clicking the <+>

sign to the left of the new type name.

Use the scroll-bar on the right-hand side of the MIB Edit window, and scroll
down to find the following channel types:
Channel Name Object Type
Service 1
LedCh 2
AlarmCh 2
OpSysCh 11
PPProcCh 11

The Object type of each channel name should be changed in accordance
with the above table. To do this, perform the following procedure (2d) for each
channel name.

2d. Right click the channel name in the MIB Edit window, and select <Proper-

ties> from the pop up menu. In the Properties window, note the Type un-
der [Element info]. This is the Typename of the channel, e.g. 'TypeNo117'.

Use the scrollbar on the right-hand side of the MIB Edit window to find the
[Typename] of the channel. Left click the [Typename] to update the Proper-
ties window with the type information of the channel typename.

Select [Type Info] in the Properties window and change the [Object Type] to
the value in the above table.

Repeat this for each channel name in the table.

2e. Close the Properties window.

2f. Select <View | Show Nodes/Virtual Names> in the MIB Edit window.

8. An instance of this newly created node type can now be incorporated within the

project. If it is a new Node, it should be created as described in this section. If
the node of this node type already exists, the node type will have already been
updated, and this step can be skipped.

502 086 07

Manual VIGO 89/108

To create a new Node, right click the project icon in the MIB Edit window and select
<New> in the pop up menu. In the [Add Element] dialog box, make sure that [Add
new as: Sub Element] is selected. Select “Node” in the [New Kind] combo box.
Type a name for the node in the [New Name] edit box. Now click the <OK> button.

Right click the new node icon and select <Properties> from the pop up menu. Un-
der the [Element Info] tab in the Properties window, select the new node type name
in the [Type] combo box. Select the network to which the Node is connected in the
[Net] combo box.

Close the Properties window.

9. Right click the [WorkSpace] icon in the MIB Edit window, and select <Refresh>

from the pop up menu.

The new node is now ready to be used.

502 086 07

90/108 VIGO Manual

8 Error codes
This section describes the relationship between the Errorcode and ErrorString properties of
the VIGO.STD and VIGO.PRO objects. Different parts of the VIGO system can generate
error codes and strings. This section is divided into a subsection for each error code gener-
ating part of VIGO.

8.1 P-NET errors
0x0100=Historical Data Error
0x0200=Actual Data Error
0x0300=Actual and Historical Data Error
0x0800=Conversion Error
0x0900=Historical and Conversion Error
0x0A00=Actual and Conversion Error
0x0B00=Actual, Historical and Conversion Error
0x0400=No Response
0x0408=Time Out
0x0410=Too Busy
0x0418=Wait Too Long
0x0420=Buffer Full Or Empty
0x0428=Data Format Error
0x0430=SWNo Error
0x0438=Node Address Error
0x0440=Read- or WriteProtected
0x0448=InfoLength Error
0x0450=Instruction Error
0x0480=Error Detect Failure
0x0488=Overrun-Framing Error
0x0490=Net Short Circuit
0x0498=Port Not Master
0x04A0=Out Of Sync
0x04A8=RS-232 Handshake error
0x04E8=No interrupt from P-NET card
0x04F0=P-NET card has been reset
0x04F8=Defect P-NET card
0xFFFE=No free controlcards
0xFFFD=No receiver program - VIGO version in server less than 4.00 ?
0xFFFB=Set Event failed
0xFFFA=Busy
0xFFF9=No MODEM connection
0xFFF8=IP/IPX error - No connection ?
0xFFF7=No legal address
0xFFF6=No P-NET address field
0xFFF5=No contact with P-NET card
0xFFF3=Internal Packet failure
0xFFF1=Device driver not loaded
0xFFF2=No connection or No legal address

502 086 07

Manual VIGO 91/108

0xFFEB=MODEM Responded NO CARRIER
0xFFEC=MODEM Responded NO DIALTONE
0xFFEE=MODEM Responded BUSY
0xFFEF=MODEM Responded ERROR
0xFFF0=MODEM Failed too disconnect phone line

8.2 HUGO errors

0xFF00=Out of memory
0xFF02=File not found
0xFF03=Path not found
0xFF05=Attempt to link dynamically
0xFF06=Library requires separate data segment
0xFF08=There was insufficient memory to start the application
0xFF0A=Incorrect Windows version
0xFF0B=Invalid executable file
0xFF0C=OS/2 application
0xFF0D=DOS application
0xFF0E=Unknown executable file type
0xFF0F=Attempt to load file in protected mode
0xFF10=Attempt to load a second instance
0xFF11=Attempt to load a file in large EMS mode
0xFF12=Attempt to load file in real mode
0xFF13=Attempt was made to load a compressed exe file
0xFF14=Dynamic-link library (DLL) file was invalid
0xFF15=Application requires Microsoft Windows 32-bit
0xFF16=Could not load driver
0xFF20=Response structure not decreased
0xFF21=Local free failed
0xFF22=String copy failed
0xFF23=No response number
0xFF24=Response no out of range
0xFF25=No response information added to Controlcard
0xFF26=No response type defined (Message, Callback or Polling)
0xFF27=Max length for extra data exceeded
0xFF30=Can't open license file
0xFF31=Illegal version of software
0xFF32=License no longer valid
0xFF40=MIB project file not found
0xFF41=No Default project loaded by VIGO.EXE
0xFF42=No valid handle to the Target Specification
0xFF43=The MIB project number out of range
0xFF44=Not able to load project into MIB
0xFF45=No default project found
0xFF80=Can not load Hugo2, because out of memory
0xFF82=Hugo2 not found

502 086 07

92/108 VIGO Manual

0xFF83=Path for Hugo2 not found
0xFF85=Hugo2 can not find driver
0xFF86=Hugo2 requires separate data segment
0xFF88=Insufficient memory (Hugo2)
0xFF8A=Incorrect Windows version for Hugo2
0xFF8B=Hugo2 invalid executable type
0xFF8C=Different operating system (Hugo2)
0xFF8D=DOS application
0xFF8E=Unknown executable type
0xFF8F=Hugo2 attempt to load in real mode
0xFF90=Attempt to load a second instance of Hugo2
0xFF93=Hugo2 attempt to load a compressed executable file
0xFF94=Hugo2 DLL files were invalid
0xFF95=Hugo2 requires Windows 32
0xFF96=Hugo2 just loaded
0xFF97=Hugo2 failure (Hugo2 unstable)
0xFF98=Controlcard not in timeout queue
0xFF99=No response, timeout
0xFFA0=Application buffer too small
0xFFB6=Controlcard contents can not be reused
0xFFB7=Postmessage failure (Response type = message)
0xFFB8=Error DLL file not found
0xFFB9=Error DLL already loaded
0xFFBA=No translate function found within Error DLL
0xFFBB=Wrong identifier type within Controlcard
0xFFBC=No error field within Controlcard
0xFFBD=Rewind not allowed, because no error detected
0xFFBE=Retry not allowed
0xFFBF=Not a Hugo2 address within Controlcard
0xFFC0=Illegal number of masters
0xFFC1=Illegal node address
0xFFC2=Could not load P-NET device driver
0xFFC3=Thread error in driver
0xFFC4=Illegal IO_CONTROL_FUNCTION
0xFFC5=Illegal parameter size
0xFFC6=Interrupt not available
0xFFC7=No contact to P-NET card
0xFFC8=Illegal LPT-Port or COM-Port number
0xFFC9=Illegal BASE-IO-ADDRESS
0xFFCA=Registration database key not found - is P-NET card installed?
0xFFCB=Illegal baudrate
0xFFCC=Illegal HUGO path
0xFFCD=Socket Error
0xFFCE=LPT-Port or COM-Port busy
0xFFCF=No Workspace created
0xFFD0=P-NET driver error - check IRQ and I/O in Driver parameters window
0xFFD1=IRQ error - Restart your computer as administrator and start VIGO

502 086 07

Manual VIGO 93/108

0xFFD6=No Net file found
0xFFD7=No driver loaded
0xFFD8=Project already loaded
0xFFD9=No project connected
0xFFDA=No current port configuration
0xFFDB=Initiate function failure
0xFFDC=Application not running
0xFFDD=Application has no access to application list
0xFFDE=No relation between window and task
0xFFDF=Max length for request data exceeded
0xFFE5=AED field do not fit total field length
0xFFE6=No Confirmation function found
0xFFE7=No Indication function found
0xFFE8=No Conclude function found
0xFFE9=No Initiate function found
0xFFEA=Max length for name exceeded
0xFFEB=Application number out of range
0xFFEC=Application number not equal to Requester
0xFFED=Driver not loaded
0xFFEE=Application number already in use
0xFFEF=Named file not found
0xFFF0=Response number out of range (Hugo2 unstable)
0xFFF1=No free response number
0xFFF2=Identifier type not allowed
0xFFF3=Application is not owner of Controlcard
0xFFF4=Response data too large
0xFFF5=Control number out of range
0xFFF6=Response fata not allowed (Unconfirmed request)
0xFFF7=Unconfirmed request not allowed
0xFFF8=Request not legal

0xFFF9=No free control number
0xFFFA=Control number is not in use
0xFFFB=No Response application
0xFFFC=No Request application
0xFFFD=No field within Controlcard
0xFFFE=Application has no access to control number
0xFFFF=Indication or confirmation handle invalid

8.3 MIB errors

0x0001=Error doing project allocating
0x0000=Allocation OK. First load
0x0002=Allocation OK. Not firstload
0x0003=Can't open MIB file, it is already opened in edit mode by:

502 086 07

94/108 VIGO Manual

// LoadProject
0x0020=Project Info Pointer not found
0x0021=No file name
0x0022=No file type
0x0023=Unknow file type

// UpdateBlockIndexes / UpdateListIndexes
0x0030=Wrong Element size
0x0031=Wrong Element size
0x0032=Variable without type declaration
0x0033=Wrong Element size

// ReadSubBlockFromFile
0x0040=Error reading header
0x0041=Error in version
0x0042=Error in block size
0x0043=Reserved header name
0x0044=Update with another name failed
0x0045=File block name read failed
0x0046=Access to file denied
0x0047=File not found
0x0048=Unknown file
0x0049=Load subblock as project
0x004A=Load project as subblock
0x004C=File block read error
0x004D=Error when setting Read-File-Position
0x004E=Error in the project number
0x0241=Error in version, Use VIGO 3.0 for conversion
0x0242=Error in version, can't be converted

// OpenMIBBlockFile
0x004B=Project script file not found

// WriteSubBlockToFile
0x0050=Write header failed
0x0051=Write database failed

// PutElementFields:
0x0053=Name already exists
0x0169=The Port is already defined, can not be redefined
0x0170=Editing the PortName is not allowed

// DeleteElement
0x0054=Move block to bottum failed

// MoveNameToBottom
0x0055=Error in the Name string

502 086 07

Manual VIGO 95/108

0x0056=Error in the Name string format

// FindLocalName
0x0057=Error in the Name string

// FindName
0x0058=No name specified
0x0059=Name not found
0x005A=Subelement not found
0x005B=Invalid ProjectPtr or NameSpace index error

// FindNameStr and FindNameStrType
0x0060=No name
0x0061=Field name not found in record type

0x0062=Type name not found
//0x0063=Name not found
0x0064=Element name not found
0x0065=Error in Array index
0x0066=Missing '['
0x0067=Error in Array index
0x0068=Name is a type
0x0069=Name to string format wrong
0x006A=Not an array type error
0x006C=Missing ']'

//FindPhysId
0x006B=TypeName In Reference

// AddElementWithSize
0x006D=No more nets allowed

// GetNameIndex:
0x0070=Name missing
0x0071=Type missing

// FillTargetSpecification:
0x0080=Project missing
0x0081=Name string missing
0x0082=Wrong version
0x0083=Invalid name space
0x0084=Consistency error, go to the MIB Edit Tab in VIGO.exe and run a Consistency
Check on the project and save the project
0x0085=Project is not enabled
0x0086=Cannot set SubPhysId, PhysId is not SWNo, Register or Channel
0x0087=PhysID is a group

502 086 07

96/108 VIGO Manual

// SubFillTargetSpecification:
0x0090='.' expected
0x0091=Error in Type name
0x0092=Error in Index range
0x0093=Missing ']'
0x0094=Missing '['
0x0095=Invalid name
0x0096=Missing '[' or '.'
0x0097=Syntax error
0x0098=No subtype
0x0099=Unknown kind
0x009A=Invalid type name
0x009B=Invalid use of alias
0x0165=No access to internal values in BufferType
0x0168=Alias OverFlow

// MAP2MIB. MakeNodeTypeFile , ReadMapFile:
0x0100=MAP file not found
0x0101=MAP file could not be opened

// CheckConsistency
0x0109=Invalid basic type
0x0110=Name to long
0x0111=Unexpected type name
0x0112=Missing type name
0x0113=Invalid SubPtr
0x0114=SubPtr out of block
0x0115=SubPtr out of database
0x0116=Inconsistent element size and block size
0x0117=Inconsistent project block size and database size
0x0118=Inconsistent element size
0x0119=Unexpected SubPtr
0x0120=Inconsistent sub kind
0x0121=Invalid sub element offset
0x0122=No filler needed
0x0123=Hole in record type

0x0124=Missing SubPtr
0x0125=Name is not a type

0x0126=Wrong Index type sized
0x0127=Array type size wrong
0x0128=Element type wrong
0x0129=Full name is not valid
0x0132=Invalid Net name
0x0133=No net types specified
0x0134=Invalid Node Address

502 086 07

Manual VIGO 97/108

0x0135=Invalid Port reference

0x0140=Invalid element kind
0x0141=Invalid element index

0x0142=No size expected
0x0143=Size expected

0x0144=Unexpected UpPtr error
0x0145=Missing UpPtr error
0x0146=Inconsistent type size
0x0147=Unexpected offset
0x0170=No element (SWNo or Channel) with the same swno as this PortTemplate

// HUGOMIB
0x0150=No Default Project Found
0x0151=No Project Found
0x0152=No Project File Found
0x0153=No Valid Handle
0x0154=Project Not Open
0x0155=Netdescription Not Found

// Kind table/ subkinds
0x0160=Invalid kind error
0x0161=Invalid sub kind error
0x0162=Invalid sub kind for this kind error

//MIBClipBoard
0x0163=ClipBoard Is Empty
0x0164=Memory copy failed

// convert
0x0200=Can not convert MIB file in View Mode

// Net
0xFFEE=No "IDC" Information in registration database
0xFFEF=No "NetType" Information in registration database
0xFFF0=No Specific NetTypes Key in registration database
0xFFF1=No "NetTypes" Key in registration database
0xFFF2=No "Projects" Information in registration database
0xFFF3=No "Default Portnumber" Information in registration database
0xFFF4=No "Current Workspace" Information in registration database
0xFFF5=No "Workspaces" Key in registration database
0xFFF6=License NetName used
0xFFF7=No route to net
0xFFF8=No fieldbus address
0xFFF9=Illegal combination of nettypes

502 086 07

98/108 VIGO Manual

0xFFFA=No address
0xFFFB=No nets on this PC
0xFFFC=Too many nets
0xFFFD=Error in registration database
0xFFFE=Unknown nettype

0xFFFF=Netname not found

8.4 MIBOLE interface errors
// error codes for Read
0x0001=Error while opening MIB file
0x0002=Could Not Read Element Fields
0x0003=No parent element
0x0004=No next element
0x0005=No Previous element
0x0006=No child element
0x0007=Error while saving project
0x0008=Error while deleting element
0x0009=Error while adding Subelement
0x000A=Error while adding next element
0x000B=Error in Common Data for element
0x000C=Error In Element data (Kind: None)
0x000D=Error In Element data (Kind: ArrayType)
0x000E=Error In Element data (Kind: EnumeratedType)
0x000F=Error In Element data (Kind: Node)
0x0010=Error In Element data (Kind: Alias)
0x0011=Error In Element data (Kind: Constant Or EnumeratedName)
0x0012=Error In Element data (Kind: UserData)
0x0013=Error In Element data (Kind: NodeType)
0x0014=Error In Element data (Kind: Register Or RecordField)
0x0015=Error In Element data (Kind: SWNo Or Channel Or VirtualName)
0x0016=Wrong Kind
0x0017=Error while setting Index
0x0018=Error while reading or writing elementFields
0x0019=Error while running ConsistencyCheck
0x001A=Error In SetPhysId
0x001B=PortNo Out Of Range
0x001C=Obsolete Property
0x001D=NetNo Out Of Range
0x001E=Application Name to long
0x001F=Can't open MIB file, it is opened in edit mode by:
0x0020=Can't convert MIB file when "AllowEdit" = FALSE
0x0021=Invalid name
0x0022=Project not allocated
0x0023=Error while copying element
0x0024=Error while pasting element

502 086 07

Manual VIGO 99/108

0x0025=Error while creating file
0x0026=Editing not allowed (AllowEdit = FALSE)
0x0027=Can not read this property (Read Only)
0x0028=Port Name is too long
0x0029=Invalid Port Name
0x0030=Invalid Net Type
0x0031=No child element
0x0032=Can not write to this kind
0x0033=Not Supported
0x0034=Invalid Value
0x0035=Invalid Property for this object
0x0036=Invalid Methode for this object

8.5 P-NET IDC errors
0xFF00=No Fields
0xFF01=Error in opening file
0xFF02=Not a Program channel
0xFF03=Wrong Codetype
0xFF04=Wrong interpreter version
0xFF05=Program too large
0xFF06=Program too small
0xFF07=Application error
0xFF08=Unknown error
0xFF0A=Sequence stopped
0xFF0B=Not implemented yet
0xFF0C=Not supported
0xFF0D=Not connected
0xFF0E=VIGO not connected
0xFF0F=No VIGO License

8.6 VIGO errors
[DRIVER ERRORS]
0xFF01=Parameter missing
0xFF02=Not implemented yet
0xFF03=No Instruction/Data Converter or net selected
0xFF04=Read protected
0xFF05=Write protected
0xFF06=MIB error
0xFF07=Memory error
0xFF08=Size error
0xFF09=Unable to open file
0xFF0B=VIGO object not connected
0xFF0D=Conversion error
0xFF0E=VIGO not connected
0xFF0F=Value out of range
0xFF10=Incompatible types

502 086 07

100/108 VIGO Manual

0xFF11=Simulation file error
0xFF12=Invalid string
0xFF13=Not a number
0xFF14=Cannot find/load IDC
0xFF15=Invalid datatype, TestAndSet requires boolean
0xFF16=No PhysId found, cannot create Sim file
0xFF17=Negative size can not be written

502 086 07

Manual VIGO 101/108

9 Appendix A

The following tables will prove to be useful to programmers designing application programs,
who wish to use the facilities, offered by VIGO.

Table 1 contains the Properties, which can be used in VIGO STANDARD (VIGO.STD).

Table 2,3 and 4 show the Properties and Methods, which can be used in VIGO
PROFESSIONAL (VIGO.PRO).

Table 5 and 6 contain a short description of the Kinds/elements that are used in the MIB
database.

Table 7 contains the data types that are defined for P-NET modules, which VIGO also
uses.

Table 8 contains the Object Types for all Standard P-NET Channels. In addition, the Object
Types for some company specific channel types, owned by PROCES-DATA A/S, are also
given.

Further information about the P-NET Standard Channels can be found in the "P-NET Stan-
dardized General Purpose Channel Types" manual, from the International P-NET User Or-
ganization.

Table 9 contains the values for Capabilities and ObjectType for a selection of PROCES-
DATA modules, which may be used in VIGO. In the MIB definitions, the Capabilities and
Objecttype for all NodeTypes must be set to the correct value, in order to list the appropri-
ate relevant tools from the right mouse menus in the MIBOCX.

IMPORTANT NOTE TO PROGRAM DEVELOPERS:
Most application programmes using VIGO create objects using VIGO Standard
(VIGO.STD). These applications use the PhysID to select the variable to access. By setting
the PhysID property for an object, all other associated properties are automatically set in
accordance with the MIB contents.

In cases where a program developer is using VIGO Professional (VIGO.PRO) objects, and,
for some reason, wants to modify some of the properties, it is entirely the programmers’ re-
sponsibility to set ALL the other related properties to ensure that these are compatible.
Otherwise, errors may occur in transmission or data conversion.

502 086 07

102/108 VIGO Manual

Name Data type Description OLE2 Type
PhysId

ErrorCode

ErrorString

String

Integer

String

Identifies the physical object. This function fills out the specifi-
cation of the physical object obtained from the Manager Infor-
mation Base.
This variable contains a unique error code, in case an error oc-
curs when accessing an object property or method.
This variable contains an error message in plain text. This
could be used in a Message Box.

Property

Property

Property

Value Variant Used to operate on all data types. This Property must be used
for directly receiving and sending data to variables in VIGO
STANDARD.

Property

Table 1 Properties for VIGO Standard (VIGO.STD)

Name Data type Description OLE2 Type

PhysId

ErrorCode

ErrorString

String

Integer

String

Identifies the physical object. This function fills out the specifica-
tion of the physical object obtained from the Manager Information
Base.
This variable contains a unique error code, in case an error oc-
curs when accessing an object property or method.
This variable contains an error message in plain text. This could
be used in a Message Box.

Property

Property

Property

Value Variant Used to operate on all data types. This Property must be used to
receive and send data directly to variables in VIGO PROFES-
SIONAL.

Property

DoRead

DoWrite

SubPhysId

InValue

Void

Void

String

Variant

Used to start reading data into the Buffer. Data can be read us-
ing InValue
Used for writing to the contents of the Buffer. Data can be send
to the buffer using InValue
Identifying a simple element in a complex structured variable,
identified and obtained by PhysId, and located in a Virtual Ob-
ject.
Used to operate on all data types. This Property must be used to
receive and send data to the Buffer, when using the DoRead or
DoWrite Methods in VIGO PROFESSIONAL.

Method

Method

Property

Property

DataReady

Progress

StopSequence

EnableExceptions

Boolean

Float

Void

Boolean

This property indicates if the command has finished and the data
are ready when the Buffer is used to Read / Write data.
Indicates the progress of a certain command, e.g. how much (%)
of a file is downloaded.
Used to stop a sequence running within the IDC, e.g. download
or upload.
Used to enable exception handling procedures build into the vir-
tual object.

Property

Property

Property

Property

Table 2 Properties and Methods for VIGO PROFESSIONAL (VIGO.PRO)

502 086 07

Manual VIGO 103/108

Name Data type Description OLE2 Type

Download

Upload

DeleteDomain
Start
Stop
Resume
Reset
Kill
SelectProgram

UnselectProgram

ProgramState
ProgramName
FileName

Void

Void

Void
Void
Void
Void
Void
Void
Void

Void

Integer
String
String

Download a domain to a node. Function returns immediately.
Filename must be written in the Fileame property before
Download is called. The Progress property can be read during
the Download process.
Upload a domain (program) from a node. This method is not im-
plemented in VIGO 5.0.
Delete a domain within a node.
Start a program execution.
Stop a program execution.
Resume a stopped program.
Reset a stopped program.
Kill a program execution
Select a domain to be part of a program invocation. Domain is
passed as parameter.
Unselect the domain within a program invocation. Domain is
passed as parameter.
Program invocation state.
The name of the domain used within the Program Invocation.
File name for the file to Down Load or Up Load

Method

Method

Method
Method
Method
Method
Method
Method
Method

Method

Property
Property
Property

Vendor *
ModelName *
Revision *

String
String
String

Not implemented
Not implemented
Not implemented

Property
Property
Property

ExAnd

ExOr

TestAndSet

Variant

Variant

Variant

P-NET specific. The passed parameter is and’ed with the data
specified by PhysId, eg. VigoObj.And(Var)
P-NET specific. The passed parameter is or’ed with the data
specified by PhysId, eg. VigoObj.Or(Var)
P-NET specific. The value of the returned parameter depends on
the TestAndSet conditions, eg. res =VigoObj.TestAndSet(Var)

Method

Method

Method

* Vendor, ModelName and Revision can be obtained from the ServiceChannel. (Ref.

P-NET Standard).

Table 3 Properties and Methods for VIGO PROFESSIONAL (VIGO.PRO)

502 086 07

104/108 VIGO Manual

Name Data type Description OLE2

Type
IDCNo

NodeAddress

InternalAddress

Offset

SubOffset

BitNo
Size

SubSize

ObjectType

DataType

SubDataType

InformationInErrorCode
ReadAccess
WriteAccess
MaxRetry
NodeCapabilities

PhysAddress

OnlineAccess

SetVIGOMessage

Integer

String

LongInteger

Long

Long

Byte
Long

Long

Integer

Integer

Integer

Boolean
Boolean
Boolean
Short
String

Boolean

Boolean

Void

This property contains information about which Instruc-
tion/Data Converter is to be used for communication with
the end Node. This property is mainly used by VIGO to de-
termine which IDC is to be called.
This property contains a network address determined by
the HUGO2 format. It contains the route to the end Node.
This is an address that is local for the single Node. E.g.
SoftWire number or socket number.
This is an internal node parameter, e.g. used to access a
specific offset for a complex variable.
This property is similar to the Offset property, but it is only
used when SubPhysID is used.
This is an internal node parameter.
This property contains the size of the data structure in
bytes.
This property is similar to the Size property, but it is only
used when SubPhysID is used.
Description of a specific node object, e.g. for P-NET it
could be a analogue channel, digital channel, etc.
Defining the type that is to be requested within a node.
Only used for non standardized types.
This property is similar to the DataType property, but it is
only used when SubPhysID is used.
Enables that Historical Errors are visible in the ErrorCode.
Indicating that the Property/Method is read only.
Indicating that the Property/Method is write only.
Reserved for future use.
Indicating the capabilities of the node, e.g. support bitno,
offset, etc. Readout is hexadecimal.
Enables physical addressing. The physical address must
be set using InternalAddress.
Enables that the data are accessable from a file and not
from the network. This may be used for simulation pur-
poses.
This method is used to specify a message to receive when
a DoRead or DoWrite method has completed

Property

Property

Property

Property

Property

Property
Property

Property

Property

Property

Property

Property
Property
Property
Property
Property

Property

Property

Method

Table 4 Properties and Methods for VIGO PROFESSIONAL (VIGO.PRO)

502 086 07

Manual VIGO 105/108

Kind Type Description

Project

BasicType

NodeType

ChannelType

RecordType

Enumerated

ArrayType
BufferType
BitArrayType

SetType
StringType

VirtualRecordType

VirtualArrayType

BitMapType
PointerType
Procedure
Function

Project

Type

Type

Type

Type

Type

Type
Type
Type

Type
Type

Type

Type

Type
Type
Type
Type

The Project holds information about the whole Project description. The data are stored
in a MIB-file.
Boolean, Byte, Char, Word, Integer, LongInteger, Real, LongReal, OldReal, Timer,
RealDate and OdDate are all BasicTypes, from which all other types are constructed.
NodeTypes holds information about the entire data structure to use in a node. The
elements (channels and softwire numbers) inside are all set up as SubElements
A ChannelType holds a description for a channel in a Node. The elements (Registers)
inside are set up as SubElements.
Complex structures for variables are set in a RecordType. The elements (Record-
Fields) inside are set up as SubElements.
Enumerated holds identifier for logic names used in reeling off. The elements inside
(EnumeratedName) are set up as SubElements.
In ArrayType an array of a specified type can be created.
In BufferType a buffer of a specified buffer element type can be created.
In BitArrayType a boolean array can be specified. Instead of occupying a byte to each
boolean value, the BitArrayType only uses one bit for a boolean.
To give special values to a type, SetType is used.
StringType is used to define a string, which consists of a length (in bytes) and an ar-
ray of char.
The VirtualRecordType is used to give a Virtual description of the physical plant. The
elements inside VirutalRecordType (Alias, Constant, VirutalRecordType and VirtualAr-
rayType) are set up as SubElements, and can be accessed using these subnames.
The VirutalArrayType is used to give a Virtual description of the physical plant. The
elements inside VirutalArrayType (Alias, Constant, VirtualRecordType and VirtualAr-
rayType) are set up as SubElements, and can be accessed by using index values.
To define a Bitmap of a specific type, BitMapType is used.
A Pointer to another Type definition is created from PointerType
To reserve a name for a Procedure in an application the Kind: Procedure is used.
To reserve a name for a Function in an application the Kind: Function is used.

Kind Type Description

Node

Channel

Register

SWNumber

RecordField

Constant
EnumeratedName

Alias

VirtualName

Variable

Variable

Variable

Variable

Variable

Constant
Constant

Variable

Variable

Nodes are used to gain contact to modules within the physical plant. Nodes are
only set up from the kind: NodeTypes.
Channels are used in the description of a NodeType. Channels are set up from the
kind: ChannelType.
Registers are used to describe all variables inside a ChannelType. Registers can
be set from all Type Kinds, except ChannelType and NodeType.
If the SoftWire number is known, this can be given directly. SWNumbers are used
in NodeType.
A RecordField holds all Type Kinds, except ChannelType and NodeType. Record-
Fields can only be used inside a RecordType.
To set a Constant in the Project description the Constant element can be used.
As SubElements to Enumerated, EnumeratedNames are used. The Names repre-
sent a specified value.
Aliases are used to set up pointers, which can act as short cut to elements within
the Project description.
In Virtual descriptions the VirtualName consist the VirtualRecordType or the Virtu-
alArrayType to use.

Table 5 Kinds of MIB elements used in a Project Description

Table 6 Kinds (Variables) in the MIB

502 086 07

106/108 VIGO Manual

P-NET Data Type
Number

Hex Decimal
Length in bytes

Empty 0x20 32 -
Integer 0x22 34 2
LongInteger 0x23 35 4
Real 0x24 36 4
LongReal 0x25 37 8
RealDate 0x27 39 8
String 0x28 40 -
Boolean 0x2B 43 1
OldDate 0x2E 46 8
Byte 0x31 49 1
Word 0x32 50 2
UserDefined 0x3D 61 -

Table 7 List of datatypes for P-NET modules.

502 086 07

Manual VIGO 107/108

The object types for P-NET Standard Channels and some company specific channels are
found in the following table.

Object

Description
0 Object type is not used or the object type is a non-standard type

1 Service channel

2 Digital IO channel

3 Common I/O channel

4 Analog measurement channel

5 Current output channel

6 PID-regulator channel

7 Calculator channel

8 Pulse Processor channel

9 Printer channel

10 Weight channel

11 Program channel

12 Power Monitor channel

14 Communication channel

32769 PROCES-DATA specific Data channel

32770 PROCES-DATA specific Common I/O channel

32771 PROCES-DATA specific Thyristor Switch

32773 PROCES-DATA specific Key/Mouse

32774 PROCES-DATA specific Display

32775 PROCES-DATA specific GateWay

32776 PROCES-DATA specific Generator Switch

Table 8 Object types for P-NET Channels

502 086 07

108/108 VIGO Manual

The following table shows the object type and the capabilities for a selection of standard
modules from PROCES-DATA A/S.
Module
number

ObjectType Interpretation of capabilities Capabilities
Hexadecimal
value

PD340 340 NoOffset,NobitAddress,OldType 7 7

PD1611 1000 NoOffset,NobitAddress,OldType 7 7

PD3100 1000 NoOffset,NobitAddress 3 3

PD3120 1000 NobitAddress 2 2

PD3150 1000 NoOffset,NobitAddress 3 3

PD3221 1000 NobitAddress,NoOffsetInlong 130 82

PD3230 1000 NobitAddress,NoOffsetInlong 130 82

PD3240 1000 NobitAddress 2 2

PD3250 1000 NobitAddress 2 2

PD3260 1000 NobitAddress 2 2

PD3920 1000 NobitAddress 2 2

PD3930 1000 NobitAddress 2 2

PD3940 1000 NobitAddress 2 2

PD3000 3000 NobitAddress, ExtendedPNET 34 22

PD4000 4000 NobitAddress, ExtendedPNET 34 22

PD4500 4500 ExtendedPNET 32 20

PD5000 5000 ExtendedPNET 32 20

PD5010 5000 ExtendedPNET 32 20

PD5015 5000 ExtendedPNET 32 20

PD5020 5000 ExtendedPNET 32 20

PD600 6000 ExtendedPNET 32 20

PD601 6000 ExtendedPNET 32 20

PD602 6000 ExtendedPNET 32 20

Table 9 Object types for PROCES-DATA modules.

