
502 086 04

GB May 1999

PROCES-DATA A/S, Navervej 8, DK-8600 Silkeborg, Denmark, Phone +45 87 200 300, Fax + 45 87 200 301

VIGO

The Fieldbus Management System
For Windows 95/98 and NT4.

Users Manual
for

Version 4.1

502 086 04

II/VI VIGO Manual

© Copyright 1996 -1999 by PROCES-DATA A/S. All rights reserved.

PROCES-DATA A/S reserves the right to make any changes without prior notice.

P-NET, Soft-Wiring and Process-Pascal are registered trademarks of PROCES-DATA A/S.

502 086 04

Manual VIGO III/VI

Contents
Page

1 VIGO in General... 1

1.1 The VIGO elements... 2
1.2 Application Programmers Fieldbus Interface... 4
1.3 Manager Information Base .. 5
1.4 Instruction Data Converter, IDC .. 7
1.5 HUGO2, the Real-time Communication Kernel ... 8
1.6 Network Driver ... 9

2 The VIGO programmes ... 10

MIB View ... 10
2.2 Workspace. ... 13

2.2.1 Import/Export ... 15
2.3 MIB Edit ... 16
2.4 Properties Window .. 19

2.4.1 Properties in Element info ... 20
2.4.2 Properties in Type info... 22

2.5 NET set up... 23
2.6 Adding or Modifying Projects... 24
2.7 VIGO access control.. 26

3 The Common Communication Service Interface .. 28

3.1 Single virtual objects.. 28
3.2 Multiple virtual objects ... 30
3.3 Application domains and shared physical objects... 33
3.4 Two ways of accessing variables over the fieldbus ... 34
3.5 Operating on Complex Variables... 35
3.6 Error handling .. 36
3.7 Error messages and Error Files... 38
3.8 Simulation mode.. 38
3.9 OLE Automation Interface ... 39
3.10 Performance .. 39

4 Advanced VIGO Programming. ... 40

4.1 Properties and methods in VIGO professional .. 41
4.1.1 PhysId.. 41
4.1.2 SubPhysId ... 42
4.1.3 InValue .. 43
4.1.4 DoRead ... 43
4.1.5 DoWrite ... 44
4.1.6 Value ... 44
4.1.7 ExAnd (And) .. 44
4.1.8 ExOr (Or) ... 45
4.1.9 TestAndSet.. 45
4.1.10 ErrorCode, ... 45
4.1.11 InformationInErrorCode ... 45
4.1.12 ErrorString ... 45
4.1.13 DataReady... 46
4.1.14 SetMessage... 46
4.1.15 EnableExceptions.. 46

4.2 Properties set by PhysId.. 47
4.2.1 InternalAddress ... 47
4.2.2 BitNo.. 47
4.2.3 Offset ... 47
4.2.4 Size.. 47
4.2.5 ObjectType .. 48
4.2.6 DataType ... 48
4.2.7 WriteAccess. ... 48
4.2.8 ReadAccess. ... 48

502 086 04

IV/VI VIGO Manual

4.2.9 OnlineAccess ...48
4.2.10 ProtectedWriteAccess..49
4.2.11 NodeCapabilities ..49
4.2.12 NodeAddress..49
4.2.13 MaxRetry ..49
4.2.14 PhysAddress ..49
4.2.15 IDCNo...49

4.3 Properties set by SubPhysId ..49
4.3.1 SubBitNo ..50
4.3.2 SubOffset ...50
4.3.3 SubSize ..50
4.3.4 SubDataType..50

4.4 RACKS (MMS) related properties and methods...50
4.4.1 Vendor..50
4.4.2 ModelName ..51
4.4.3 Revision..51
4.4.4 ProgramState ...51
4.4.5 ProgramName ..51
4.4.6 FileName ..51
4.4.7 Progress ...51
4.4.8 StopSequence..51
4.4.9 Download ...51
4.4.10 Upload ..52
4.4.11 DeleteDomain...52
4.4.12 Start, Stop, Resume, Reset, Kill ...52

5 VBMon..53

5.1 The Type Field ...54
5.2 The Offset Field..54
5.3 The Data Field..54
5.4 Main menu..55

5.4.1 File..55
5.4.2 Edit ...55
5.4.3 Options ...56
5.4.4 Help ..56

6 P-NET Tools...57

6.1 Set P-NET Node Address...57
6.2 Channel Configuration..59
6.3 Program Download...60

6.3.1 Channel ..60
6.3.2 Code file ...61
6.3.3 Autostart after reset..61
6.3.4 Selected library...62
6.3.5 Selected program ...62
6.3.6 Download button ..63
6.3.7 Start button...63
6.3.8 Write enable ...63
6.3.9 Details ..63
6.3.10 Starting the Download Utility from a shortcut ...64
6.3.11 PD5000 Controller..64

7 Tools for PROCES-DATA modules ...65

7.1 PD 3000 / PD 4000 Download..65
7.1.1 Download to controller..66
7.1.2 Process-Pascal code file ..66
7.1.3 Operating system code file...66
7.1.4 Download to ...67
7.1.5 Starting PD3000 / PD4000 Download ..67

7.2 Calculator Assembler ...68
7.2.1 User Interface...69
7.2.2 Editing a file..69
7.2.3 Assembling a program ...70
7.2.4 Downloading a program ...70

502 086 04

Manual VIGO V/VI

7.2.5 Debugging a program.. 71
7.2.6 Calculator programming .. 71
7.2.7 Help ... 71

7.3 Calculator Download ... 72
7.3.1 Download to channel ... 72
7.3.2 Calculator code file .. 73
7.3.3 RunEnable... 73
7.3.4 Download... 74
7.3.5 Reset node. ... 74
7.3.6 Starting the Calculator Download program.. 74

7.4 Screen Dump... 75
7.4.1 Save / Save as .. 76
7.4.2 Print ... 76
7.4.3 Load... 76
7.4.4 Copy to clipboard... 77
7.4.5 Load picture from controller... 77

7.5 MapToMIB ... 78

8 Appendix A... 83

502 086 04

VI/VI VIGO Manual

502 086 04

Manual VIGO 1/92

1 VIGO in General

VIGO is a Fieldbus Management System, installed on PC’s running the Microsoft
WindowsTM operating systems. VIGO is used in conjunction with process automation
systems, where individual control units are distributed within a plant, and where one or
more Field buses are used for the data inter-communication. Microsoft WindowsTM is an
operating system, which executes programmes, controls the keyboard and screen,
manages the hard disc and contains tools for configuration and program execution. In a
similar way, VIGO is an "operating system", used to handle the different tasks specific to
a Fieldbus system.

Some of these tasks are:
� To provide a uniform and well-defined communication link between standard

programs in PC’s, and variables and constants in modules (nodes) on a Fieldbus.
These variables and constants are identified by a unique name (identifier). A standard
program, could for example be an Excel spreadsheet, or it may be created using
Visual Basic, Delphi, Visual C++ etc.

� To hold information about the location and type of each identifier. This information
includes the node address for the interface module, a logical or symbolic address, an
offset, the data structure, the data type etc.

� To execute simultaneous communication through different Fieldbus interfaces, and
handle the queuing problems that occur in a Windows multi-tasking environment,
when several applications wish to communicate at the same time.

� To keep track of which tools can be used with the various types of data and data
structures, with consideration for the actual physical objects and interface modules
used within the plant. These tools may be configuration tools, compilers, assemblers
etc.

� To provide information to compilers and assemblers about variables that already exist
in VIGO, so that they do not need to be declared again. It is therefore possible to
create compilers where one does not need to declare global variables, because the
compiler itself can load the necessary information directly from the description that
VIGO holds about a plant.

� To provide an editor, in order to construct and maintain a description of the physical
plant, where nodes, data types and the associated identifiers are defined. If one
wants to insert, modify or delete single elements from the description, using a
program other than the editor, this may be done using the editor’s OLE automation
interface. This might occur for example, if a plant description already exists in a file,
and this is required to be used as a VIGO description of a plant.

502 086 04

2/92 VIGO Manual

� To associate the users program files, help files, connection diagrams, data
specifications etc., with the physical objects and modules, which are contained within
the VIGO description of the plant.

� To simulate plant data within the PC. This facility can be used in connection with an
off-line configuration, backup / restore of plant information and when simulating plant
functionality. This is useful for training purposes.

All exchange of data between inter-communicating PC application programmes and
VIGO is done by means of OLE automation, (a Microsoft standard for data exchange).
As an OLE automation Server, VIGO provides an open and well-defined interface to the
user’s application program. Any data requested from any point within the plant network,
is treated and looks as if it were directly accessed from within the PC. The user does not
need to consider variations in different communication protocols, data conversion or
addressing methods.

From the users point of view, all these tasks are handled by VIGO, and the result is a
simple, uniform and well defined interface to all data on the networks. VIGO is an open
system, where the program interface is written in such a way, that new tools and new
Fieldbus systems can be developed and added by the user.

The impact of using VIGO is significant, in that there is now only a need to interface to
one system, no matter what the Fieldbus type is. Tools, utilities and programmes
developed for use with VIGO can therefore be regarded as general purpose. This means
that an increasing number of companies can provide packages for common use, which
will result in a shorter development phase. This will also lead to cost savings, since an
integrator needs only to understand one system.

1.1 The VIGO elements
The Fieldbus Management System VIGO is a collection of several program elements.
The basic elements within VIGO are VIGOSERV, the MIB and HUGO2. The flexible
structure of VIGO allows additional elements to be easily added, and to grow with the
users needs. These elements, which can be dynamically linked without requiring changes
to the existing system, are Instruction Data Converters, Network Drivers and Hardware
Drivers.

VIGO allows user applications to be designed without consideration for the underlying
networks, by representing those networks as a collection of independent, installable
components.
VIGO provides the opportunity for the user to dynamically add new tools, such as a Node
Configuration Editor, a MAP file converter, a Backup/Restore utility, a Monitor, a
Compiler, etc.

502 086 04

Manual VIGO 3/92

The elements of VIGO are shown below.

VIGO

All this makes VIGO an open system, which can always be expanded for inclusion of new
network connections to physical objects, and new tools for configuration. It is open, in the
sense that anyone can provide a network or tool implementation, and anyone can
develop an application that uses the communication functions offered by VIGO.

Within the following sections, the elements of VIGO will be examined in greater detail.

502 086 04

4/92 VIGO Manual

1.2 Application Programmers Fieldbus Interface

The Application Programmers Fieldbus Interface - VIGOSERV, provides a simple
interface to standard program packages such as Visual Basic, Delphi and Visual C++,
spreadsheets, databases, Human-Machine Interfaces and other visualisation programs
such as SCADA.
VIGOSERV is an OLE Auto-
mation Server, which creates
a consistent and transparent
interface between the user
program (application), and
the physical elements
(objects) within the plant.

OLE Automation is a part of
Object Linking and
Embedding (OLE2), which is
a facility within Microsoft
WindowsTM, to enable real-
time exchange of data between applications.

VIGOSERV supports functions, such as read and write to variables, upload and
download of files, start, stop and reset of programs, etc., without being aware of network
operations. These functions, together with all their parameters, define the Common
Application Service Interface. The figure below illustrates the link between VIGOSERV
and user applications.

Any manipulation of a particular physical
object is achieved via its associated virtual
object within VIGOSERV. Virtual objects are
created by user applications, where a virtual
identifier is also defined. The virtual object is
made to point to the physical object by means
of the physical identifier - a unique name. The
physical identifier is defined in the Manager
Information Base.

User Applications
eg. Visual Basic, C++, EXCEL,...

VIGOSERV
Application Programmers Fieldbus Interface

Common Application Service Interface:
OLE2 Automation

Application

Virtual
Object

Physical
Object

The Application uses
a Virtual Object to
access a Physical Object

The Virtual Object
is identified by the
Virtual Identifier

The Physical Object is
identified by the
Physical Identifier

502 086 04

Manual VIGO 5/92

1.3 Manager Information Base

VIGO includes a Manager Information Base - MIB. VIGO uses the MIB to describe the
whole Fieldbus control system of a plant, which in VIGO is called a Project.

In general terms, a Fieldbus system is constructed with a number of Fieldbus devices,
called Nodes. The MIB contains a description of the different Nodes in the system, and
holds information about these Nodes, such as Node Identifier, Nets, Node address, Node
type and other relevant information. It also holds information about the Nets within the
project. From all this information, the communication path to the Node can be computed.

Furthermore, a node consists of a number of variables. The MIB contains a description
of all the variables within a Node, that may be accessed via the Fieldbus. Each variable
within a Node can be of simple (byte, integer, real etc.) or complex type (array, record,
string).

In VIGO, the entire collection of variables within a Node can be regarded as one large
variable of complex type, the Node type. Access to a variable within a Node is described
using the same method as with an access to a Record in the Pascal or C languages,
where the Node is the Record and the variable is a field within that Record.

In a similar way, the contents of all Nodes within a plant can be regarded as one huge
variable, organised as a Record and represented by a Project identifier. Access to a Node
within a Project is then described by means of the Node identifier, where the Project is
the Record, and the Node is a field within the Project Record.

A global identifier, unique for a specific variable within the plant, may now be composed
by combining the above mentioned structured elements. A global identifier is the same
for any device within the Project and starts with the Project identifier followed by a ’:’. The
rest of the global identifier is then constructed, by appending the Node identifier and the
sub-element identifiers, to create the complete path to the variable. Each identifier is
separated by ’.’, in exactly the same way as access to fields in a Record, e.g.:

Project_Identifier:Node_Identifier.Variable_Identifier

Thus, a Variable definition consists of a Variable_Identifier, information about the location
of the Variable, and a Type description. Such a definition must be available for any type
of Variable, be that a simple variable, a complex variable, a Node or a Project.

As an example, a simple Variable will be used. The Variable is identified by a Name,
called the Variable_Identifier. The location of the Variable describes the internal address
within a Node. The Type description for a simple Variable just defines one of the basic
data types, e.g. real, byte, boolean etc.

502 086 04

6/92 VIGO Manual

Another example of a Variable is a Node. A Node is identified by a Name called the
Node_Identifier. The location of the Variable describes the Fieldbus ’path’ to the Node,
including specific Fieldbus information. The Type description for a Node is given by the
Node Type, which describes the internal variable structure.

If more than one Variable of identical Type is found within a Project, the Type only needs
to be defined once. This includes Node Types.

Node Types are typically rather complex, but having a well-defined structure. Such types
may be generated automatically from device descriptions or by compilers/assemblers.

The user interface used to monitor the contents of the
MIB and to enable the structure of the system to be
illustrated is handled via a MIBOCX. This is an OLE
Control Extension (OCX) according to Microsoft
Windows. The MIBOCX allows a browser function to be
performed, and displays a tree-structure, in a similar
way to standard file managers. In this case however,
the elements are not drives, directories and files, but
Project, Nodes, Variables, and Types. An example is
shown in the figure to the right. This OCX control can
be directly called and used by an object oriented
programming language supporting this feature (Visual
Basic, Visual C++, and Delphi). This OCX control is
used within a number of different VIGO tools, including
the MIB Edit.

In a similar way to standard Windows programmes, the
right mouse button can be used within the MIBOCX, to
show dedicated menus, depending on the selected object. This means that selecting a
Node and using the right mouse button results in a menu list relevant for a Node.
Selecting a Project provides another menu list relevant for a Project. This is described in
more details later.

As described above, the MIB contains all the information required to access a physical
object, such as a digital I/O, an analog I/O, a flow meter, etc. When VIGOSERV requests
information from the MIB, using a global identifier for a physical object, the MIB collates
all necessary information about the physical object, and returns this to VIGOSERV.

In other words, the MIB describes how data is structured, how different data elements are
related, where data is stored, and who has access to that data. It therefore enables a
physical plant to be completely described as a Project, in terms of data, related data
structures and data location.
Once the data definition is completed, a system is capable of automatically acquiring data
from, and distributing data to, control level devices, such as Windows applications,
process computers, PCs, PLC’s, I/O modules, etc.

502 086 04

Manual VIGO 7/92

1.4 Instruction Data Converter, IDC

Different Fieldbus systems may use dissimilar data formats, syntax’s and services on a
variety of networks. The purpose of VIGO is therefore to have a common application
programmers interface to any Fieldbus interface. VIGOSERV defines a Common
Communication Service Interface, which fulfils the demands for services and data formats
for the different Fieldbus types. A plant can be built, which uses a variety of different
Fieldbus systems simultaneously. For each Fieldbus within the plant, it is therefore
necessary to be able to convert to/from various sets of services and data formats into the
common format. This conversion is performed by a set of Instruction Data Converters,
IDC's, one for each Fieldbus system.

Information exchange between
VIGOSERV and the IDC, is based
on the RACKS specification.
The Instruction Data Converter
(IDC) is a Microsoft WindowsTM

Dynamic Link Library (DLL).

The IDC must convert the VIGO
data and services into the related
Fieldbus data and services that
are understood by the relevant
Fieldbus node.

This data must be packed in such
a format in order that the related
network driver is able to transform
it for network communication. The IDC and network driver is always closely linked to each
other, by means of an internal network specific packet format.

VIGOSERV
Application Programmers Fieldbus Interface

IDC
Instruction Data Converter

HUGO2
Real-time Communication Kernel

Common Communication Service Interface
Manufacturing Message Specification

Specific Network Protocol following the HUGO2 syntax

502 086 04

8/92 VIGO Manual

1.5 HUGO2, the Real-time Communication Kernel

The routing and handling of several
simultaneous information packages for the
same, or different networks, is also
managed by VIGO, via the real-time
communication kernel HUGO2. HUGO2
ensures that communication packages and
messages do not get mixed, in situations
where several applications are trying to
access the same bus system, in a multi-
tasking environment. HUGO2 takes care of
defining and managing networks, queuing
and routing messages, establishing error
handling procedures and handling
interrupts at different levels. The queuing
facility in HUGO2 is shown in the figure to
the right.

This environment is somewhat different from the DOS operating system environment,
with a single task, dealing with only one application, and therefore no queuing is required.

HUGO2 is designed for both time critical and non-time critical communication. Time
critical communication is controlled by hardware interrupts, whilst non-time critical
communication is performed by means of messages within the Windows environment.

HUGO2 is able to handle several communicating applications simultaneously, which may
involve dealing with many requests and responses at the same time.

HUGO2 can dynamically load network drivers, which gives the user the opportunity to add
new network drivers if required. Basically, HUGO2 is a transport system, which means
it does not need to know what is being sent. The interpretation of Fieldbus messages is
carried out by the associated IDC.

HUGO2 is also a communication system that manages data security and integrity, for
data inquiries made to the plant.

HUGO2

IDC

Network
Driver

Dispatcher

Network
Driver

Network
Driver

IDCIDC

502 086 04

Manual VIGO 9/92

1.6 Network Driver

A HUGO2 Network Driver interface provides the connection between HUGO2 and a
standard Fieldbus driver (for example P-NET), or a LAN driver (for example VIGO-IPX).

A communication network can be realised in several different ways. Three network types
can be connected to HUGO2. These are Fieldbuses, Local Area Networks (LAN) and
Wide Area Networks (WAN). There are distinct differences in the usage of these network
types. The LAN and the WAN types are only used for transporting messages, which
means they have no knowledge of what is being sent on the network, whereas
Fieldbuses have built in protocols, which interpret the contents of what is being sent and
received.

The combination of network types provides the capability of installing a Windows
application on a PC, which has access to a Local Area Network and/or Wide Area
Networks, and then routing the information via another PC, which has access to a
fieldbus, to which the physical object is connected.

This is all illustrated in the figure below.

VIGOSERV

P-NET
Protocol

HUGO2

LAN
Driver

User
Applications

LAN
HW

P-NET
C

Local Area
Network
H d

Local Area
Network
D i

HUGO2

LAN
Driver

LAN
HW

P-NET
Driver

P-NET
HW

Eg. IPX/SPX ,
NetBios
TCP/IP

P-NET
Node

 Eg. Ethernet P-NET

MIB

502 086 04

10/92 VIGO Manual

2 The VIGO programmes
The VIGO Fieldbus Management System is a collection of associated programmes,
DLL’s and tools. The principle window of the VIGO program is shown below. This must
always be loaded (or minimised), when VIGO functionality is required.

The VIGO window consists of three tabs: MIB View, Workspace and MIB Edit.

VIGO can be used for a variety of purposes, which depend on the requirements of the
user.

Before VIGO can be used, it must be configured to match the required VIGO
environment. This includes establishment of a Workspace having a selection of projects
enabled, together with all the parameters of the appropriate drivers correctly set.

MIB Edit is used by the systems integrator who wants to set up a new, or modify an
existing system, and needs to carry out the necessary configuration of the nodes. In this
situation, VIGO can be started up from the Start Menu, from a shortcut or directly from
the Windows Explorer.

2.1 MIB View

The MIB View tab shows the projects
that can be accessed by the
application programs that need to use
VIGO. VIGO will be automatically
started as soon as one application
program creates a VIGO object.
Under these circumstances, VIGO will
be loaded in a minimised state, and
will only appear in the task bar. VIGO
will be automatically closed again,
when VIGO objects are no longer
required by the applications.
MIB View provides an illustration of
the structure of a project, in terms of
nodes, channels and other variables
that are included in a particular
system.

Furthermore, MIB View enables the
user to find and select variables, in
order to call upon other programs and
tools that are relevant to the selected
item. Such tools can be selected from
a menu that appears when the right
mouse button is clicked on a
highlighted item.

502 086 04

Manual VIGO 11/92

MIB View utilises a custom control, called MIBOCX, which is an "OLE Control Extension",
designed for VIGO. The MIBOCX is used to provide a visual representation of the
structure and relationship of the variables within a project.

The project structure is shown in the form of a tree, in a similar way as does the Windows
Explorer file manager. However, instead of showing folders and files, the MIBOCX in MIB
View, illustrates the nodes and variables relating to the project description of the system.
The same MIBOCX control can be included in other programs, such as those developed
using Visual C++, Visual Basic or Delphi, since all of these languages support the use
of such controls.

If the right mouse button is pressed when an element in the structure is highlighted, a
menu is shown. This menu provides a choice of functions and tools, but which are only
relevant for the selected element.

A Project is identified by a
name, and is represented by
a Project icon in the
MIBOCX.
A factory can be divided into
different projects or projects
can represent systems at
different locations.
The elements that are used to
describe a physical plant
within a project, consist of
Nodes, Aliases and Virtual
names. The Aliases and
Virtual names are used as
shortcuts for constructing and
combining identifiers from
already defined variables,
thereby giving access to
actual variables in a more
convenient way. A Project can
be expanded into it’s
elements, by clicking on the +
sign at the Project icon.

A Node within the Project description (the MIB), is defined as a module or a unit within
the physical plant (e.g. a PD3221- Universal Process Interface, UPI). Each Node is
represented by a Node icon in the MIBOCX.

The complete
global identifier
for the register

Project icon

Node icon

Channel in a
Node

Register in a
channel

502 086 04

12/92 VIGO Manual

A Node, which is a variable, is based on a type, a Node type. The Node type describes
the data structure within the node. The data structure of a particular Node variable, e.g.
it’s channels and registers, can be seen by clicking on the Node icon’s + sign. A particular
Node type can be used many times within a project description.

The MIB description is built using a number of inter-related elements. These elements
may be of different Kinds. One Kind of element can represent a Node. Another Kind of
element can represent an Array, and yet another can represent a Channel. Each Kind of
element is represented with a particular icon, used to illustrate the variable in the
MIBOCX.

It is also possible to select an element of an array, by changing the element index
number. Click once on the selected index number, type in a new index number and then
click the mouse pointer elsewhere.

In the example shown above, the Project is called “Simulation Project” and the Node is
called UPI. Within the UPI node, the data structure in the form of channels can be seen.
Within the ANALOG_IN_1 channel, the register ANALOGIN is highlighted. The complete
global identifier for a selected variable is shown in the Global identifier field.

The ANALOGIN register shown above has the complete global physical identifier:
SimulationProject:UPI.ANALOG_IN_1.ANALOGIN

When a Project icon is opened in the
MIB View tab, only Nodes, Aliases and
Virtual names are shown. This is the
default setting. Nodes and Virtual
elements can be individually excluded
from the view.

The Show nodes check box and the
Show Virtual Elements check box, are
used to limit the number of elements to
be shown in MIB View.

The Show Value check box is used to
add a Value field. This field shows the
value of the selected variable. Entering
a value, into this field followed by “Enter”, will write to the variable.

502 086 04

Manual VIGO 13/92

2.2 Workspace.
A workspace in VIGO describes the parameters for the PC connected at a certain
location. These parameters describe which projects and drivers are relevant, and specify
the driver parameters for that location.

Each workspace holds its own set of parameters. The name for the workspace can be
chosen to be the same as the name of the location. Workspaces can be added/deleted
from the pull down menu. The workspace list box shows the selected workspace used
by VIGO 4.0.

VIGO is designed to enable a PC to simultaneously handle multiple projects. Each
Project is given a name, called the Project Identifier. A Project description is stored in a
MIB file. The Workspace shows a list of existing projects. Only those projects, which are
enabled in the actual workspace, will be shown in the MIB View.

A default project can be selected. When the global identifier is without project name, the
default project is assumed. A Project may contain a number of networks, each with a
number of Fieldbus nodes connected. These networks are specified as properties of the
project.

502 086 04

14/92 VIGO Manual

Drivers on this PC indicate which drivers are available for use, but not whether the
hardware is present. For each port in use, the Net name must be selected, and driver
parameters must be correctly set.

The Driver Parameters button will display a new window, which depends on the selected
driver. This window is generated by the driver in question, and is used to set up the
required parameters. See also Guidance for selecting node address … on page 58.

This example shows the driver
parameters required by the P-NET
driver for the PD 3920 interface
when running Windows NT. The
Settings field is not available in
Windows 95/98.

This example shows the driver parameters
required by the P-NET driver for the
RS-232 interface. Please note that Node
address 0 is NOT a valid Node address,
but this is the default setting when VIGO is
installed.

502 086 04

Manual VIGO 15/92

2.2.1 Import/Export
From the “Workspace” menu it is possible to both import and export a workspace.

Exporting a Workspace will gather all relevant configuration data relating to the
workspace (including driver parameters, MIB and SIM files for enabled projects) and put
this data in a single file. This “VIGO Configuration File” will have the extension “vcf”, and
can be imported from another PC.

The Import/Export feature is a fast and simple way to move a configuration from one PC
to anoter. It can also be used by companies who install VIGO along with their own
products. They can setup their workspace as needed, export it and copy the file to a
floppy disk. Inserting the disk in the PC during the VIGO install, will force VIGO to import
this configuration file instead of the default configuration files that follows with the VIGO
system.

502 086 04

16/92 VIGO Manual

2.3 MIB Edit

The MIB Edit tab shows all the projects that have been set up on the PC, and is used to
modify the structure and properties of nodes and variables within a project.
A Variable occupies a memory location in a physical device. Variables are therefore
located within Nodes, or as previously described, a Node itself can be regarded as one
huge variable. Nodes are declared as being of a particular Node type. A Node type fully
describes all the types of variables contained within that Node. When a Node type has
been assigned to a Node, the declared variables become available for access through
VIGO.

The various Types used
within the MIB can be
divided into two distinct
groups:

Group 1, which includes
Basic types (simple
types), and Array types
and Strings. These
types are represented
on the screen by a red
icon, and do not include
any sub elements
(simple types have no
"+" sign in front of the
icon).
A Basic type is
described in the MIB as
a Basic Type Element,
represented by a red
Basic type Icon. The
Basic types are:
Boolean, Byte, Char,
Word, Integer,
LongInteger, Real,
LongReal, Timer, RealDate and OldDate. The Array Type Element also belongs to this
group, and is represented by a red Array type Icon. The properties of an Array type
element holds information about the type structure of the Array elements, as well as the
minimum and maximum index for the Array. A string is a special form of an Array (con-
sisting of an array of characters) and is represented by a red String type Icon.

502 086 04

Manual VIGO 17/92

Group 2:
This group of types
(complex types) is
described in the MIB as a
Type Element, and is
shown with a red icon,
and having one or more
Sub Elements, indicated
with blue Icons. The Type
Element properties hold
the name of the type, and
the structure of the type,
(Nodetype, Channeltype,
Recordtype etc.).

The Sub Elements with
blue icons represent
Channels, Registers,
Swno’s, Record fields etc.
The properties of these
Sub Elements describe
the relative location of the
sub type within the
complex type, and the
name of the sub type.

Blue icons are also used for physical Nodes, Aliases and Virtual names. These icons are
not shown in Types view.

The MIBOCX offers the ability to show Nodes or Virtual elements or both, in Variables
view. The icons shown in the MIBOCX represent variables, and they are normally blue,
except for the Project icon and the array index, which are red. The purpose of providing
a means of selecting which elements to show reduces the total number of icons
displayed, and helps to make it easier to select a particular icon.
By clicking a “+” sign, the MIBOCX will automatically find and show the icons representing
the Sub elements. New nodes, and Virtual elements of an already defined type, can be
easily inserted.
Virtual names and aliases can be used to give alternative names to already defined
Variables.

In the Types View mode, the MIBOCX only shows the tree structure of the types to two
levels. A red icon with a “+” sign can be opened, and one or more blue icons will appear.
This mode provides the opportunity to see all type definitions available within the Project,
and to define new types.

502 086 04

18/92 VIGO Manual

When a new type is created, such as a new Nodetype, a Recordtype or an Arraytype, all
the associated sub elements must already be declared, before the complex type is
defined. This is similar to the procedure used when declaring types in Pascal or C++.

The Global identifier is
not valid in the Types
view.

However, this field can
be used as the means
to search for types and
variables, having known
names by keying these
in.

Also the scroll arrow will
list the searches
previously made, and
further selections can
be made from this list.

The Properties of a new Element must be set up, before the new element can become
operational. This is achieved by using the Properties Window, selected by using the right
mouse button menu inside the MIBOCX.

The MIB Edit tab loads a copy of the MIB files into memory. These files are not used for
communication, and during editing, VIGO will continue to use the old version of the MIB
files, until the new files are saved. When the MIB files are saved, all VIGO objects will
automatically be updated to reflect the contents of these new files.

To save memory, MIB Edit can be disabled, using the Disable MIB Edit check box.

502 086 04

Manual VIGO 19/92

2.4 Properties Window

MIB Elements are used to describe nodes and the different variable types, within the MIB.
These elements can be of different "Kinds". One Kind of element could describe a node,
another Kind might describe an Array, and so on.

The MIB is a collection of such elements, which are referenced to each other as Next
element or Sub element.

Each element has a set of properties,
describing its relationship with other
elements and various related
constants. These properties must be
set up before the MIB can be used.
The Properties window for a particular
element is made available using the
right mouse button menu, when that
element is highlighted in the MIBOCX.

The Properties window is divided into
two or three tabbed sheets,
depending on the view mode.
Element info, and Type info are
always shown. In Variables View
(showing Nodes and Virtual names),
an additional tab sheet called
Summary info is displayed, as shown
in the figure.

If the MIBOCX is in Variables View,
the Element info mainly applies to
Nodes, for selection of the Node type,
and also to select to which Network the Node is connected. The Type info tab provides
information about the selected type, and cannot be modified from here. The Summary
info tab shows the access conditions that VIGO is using to access the selected variable.
These access conditions are not necessarily the same access conditions that are defined
for the element, as shown on the Element info tab sheet. Furthermore, the Summary
info shows the Internal address as the sum of SWNo and RegisterNo for the variable.

If the MIBOCX is in Types View, Element info shows the Kind of element and type Name
of the selected item (red icons). For sub elements (blue icons), Element info is used to
select the type and relative location of the sub type. The Type info shows the properties
of the selected type and can be modified from here (modification can only be undertaken
with red icons).

502 086 04

20/92 VIGO Manual

2.4.1 Properties in Element info

Kind
The Kind field shows the selected MIB Element type. Depending on the Kind actually
selected, some of the following Properties can be applied, and are shown either in the
Element info or Type info sheets.

The Kind is selected during the generation of new MIB elements. The New function is
available in the MIB Edit’s right mouse menu. The Kind for a MIB element in the MIBOCX
can only be changed, by firstly deleting it and then by adding a new MIB element of the
required Kind.

The different Kind icons are listed below. The upper group being red icons and the lower
group being blue icons.

Project

BasicType NodeType ChannelType

RecordType Enumerated ArrayType

 BitArrayType BufferType SetType

String BitMapType PointerType

 Procedure Function VirtualRecordType

VirtualArrayType EnumeratedName

Node

Channel Register SoftwireNo

RecordField Constant Alias

 VirtualName

Name
The Name field holds the partial identifier for the variable or the type, which the MIB
Element represents. The identifier can be modified, by first selecting the icon from the
MIBOCX, then clicking the left-hand mouse button once on the name string, to enable the
editing facility.

Type
The Type field indicates a type identifier for the variable or the type, which the MIB
Element represents. In the Variables view, the Type can be selected or changed for
Nodes and Virtual Names, by using the list box, and choosing one of the already defined
types. In the Types View, the Type is used to select or change the sub types, which are
to be included in already defined types.

502 086 04

Manual VIGO 21/92

Element access conditions
It is important to understand the principles of check box setting. When a check box is
checked in the Project property window, it will override the equivalent checkboxes in the
Nodes properties of the project, and also those in Channels and Registers. Similarly, a
ticked check box in a Node will override the equivalent check boxes in Channels,
Registers and SWNo. The check boxes in Channels will override those that are
equivalent in Registers.

The ability to Read from and Write to
a variable can be defined in the
Read/Write access check boxes.

The Protected write access check
box should be checked when the
variable is protected by the write
enable bit in the module.

The Online access check box is used
to indicate to VIGO whether the
Project, Node, variable or a field in a
record, is located in an external
physical Node (checked), or in a
simulation file (not checked). See also
page 38, Simulation mode.

Backup. This check box indicates to
the back/restore program to include
this variable in the backup.

Visible. If this box is NOT checked,
the variable (and the associated sub-
variables) will not be shown in MIB View. Furthermore, if the MIBOptimizer is
subsequently utilised, the variable will be deleted from the resultant MIB file.

SWNo. In P-NET, a SoftWire number (SWNo), defines a logical address to identify a
variable. The SWNo must be set in accordance with the actual value within the node.

RegisterNo - holds the number, which references the location of a variable within a
Channel. (SoftWire offset)

Offset - holds the offset, (in number of bytes) of a Record Field within a Record.

Port - can contain one or more tabs, each tab having a name, the number of the
Communication port, a Net name and a node address. Furthermore there can be a field
for a telephone number, an IP address or an IPX address, all depending on the port type.

502 086 04

22/92 VIGO Manual

NET - is a list box, used to select to which net the node is connected. The Nets are
declared within the property of the project. Only nets declared of a type that fit the port in
question will be listed in the list box.

Node Addr(dec). This field holds the node address, which has been reserved for the
node. This field is used together with the property of the Net, to form the complete route
to the node. The Node address is a decimal value.

If the net, to which the node is connected, is of type Modem, an additional field appears
within which a telephone number must be set. If the port is a LAN port, the node address
is either an IP or an IPX address (help on setting up an IP or IPX connection is found on
the Workspace tab under Driver parameters for the IP or IPX driver). This field is also
used by P-NET, when utilising the Set P-NET Node Address program.

Reference is used to describe the full global identifier for an Alias. The reference can
only refer to another identifier within the same project description, and therefore the
Reference must be without the Project identifier.

2.4.2 Properties in Type info

Capabilities. This property describes
the capabilities of the destination
Fieldbus Node. The coding of
Capabilities, is Node and Fieldbus
dependent. Further information about
the capabilities of a particular node,
may be obtained from the vendor, or
from the Node manual. Reference can
also be made to the Appendix, for a
list of the capabilities numbers for
PROCES-DATA modules.

Size. This property defines the size,
in bytes, occupied by the variable
within the node.

Data type. This field indicates the
data type of the variable in the node.

Object Type - is used for defining the
availability of right mouse menu items.
The Object Type adheres to the
numbering identification as described
in the Appendix.

Min index / Max index fields, indicate the minimum and maximum index of an Array.
Element type is used to describe the type of an Array element.

502 086 04

Manual VIGO 23/92

2.5 NET set up

A Project may include a number of
different communication networks,
each having a variety of Fieldbus
nodes connected. Each network (Net)
is identified with a Net Identifier. The
Net identifier must be unique within a
specific project. The Net list box is
used to select a particular Net, in
order to examine or modify the Net
Type of the Net.

The Add Net is used to add a new
Net to the project. After Add Net is
clicked, the name for the new network
can be inserted in the Net Identifier
field. Afterwards, the Net type can be
inserted. The Delete Net is used to
remove the selected Net from the
project.

The Net can be selected to be public
or private. Public Nets, which have
been defined and named within a
particular Project, are available to other projects within a given Workspace. Public Nets
with identical names are assumed to be connected. Private Nets need only to have a
unique name within a project. Private Nets having the same name as given in other
projects are assumed to be different Nets.

A pre-defined Net type can be selected for use by a Net, such as a Local Area Network
(LAN), Modem, Fieldbus etc. The Net type list box provides the means to select the
required Net type for the net in question. The choice of Net types is made available by the
VIGO program.

Any gateway or router must be specified in the MIB, including PC’s.

The information about all the Nets that are included in a Project is stored in the MIB file.
This means that a MIB file can be located in a server, and shared with others.

502 086 04

24/92 VIGO Manual

2.6 Adding or Modifying Projects

Adding projects
A new project can be added to VIGO, by selecting the Workspace icon (a PC) or a
Project icon, while in MIB EDIT, and clicking the right mouse button. By selecting Add
Project a window is presented as shown.

Choose a name for your
project, and decide
whether to do one of
four things:
“Create new standard
MIBfile” - which means
that a description file
called PDTYPES.MIB is
copied and associated
with the new project.
This file contains
several predefined
Types, which can be
used inside other Types,
or for setting up new
variables or a complete
Project. New Types can also be added to this Project description file.

“Create new empty MIBfile” - which means that a description file called EMPTY.MIB is
copied and associated with the new project. This file contains only simple predefined
Types. New Types can also be added to this Project description file.

“Copy From Existing MIBFile” – means that a new MIB is created, which is based on a
MIB which already exists. Amendments to this file will not affect the MIB from which this
file originated.

“Use existing MIBfile” – which means that the MIB file associated with this project is not
copied but uses one that has already been generated. An existing MIB file can be
selected by using the Browse facility. It should be noted that any amendments made to
this file would also be seen by other projects, which have been specified to use this MIB.

The actual name and location for a MIB file for a specific project can be found by
selecting Properties on the right mouse menu for the Project in question. A new MIB file
can also be selected by clicking the Browse button.

502 086 04

Manual VIGO 25/92

Modifying Projects
Selecting an element in a Project description is performed using the left-hand mouse
button. Sub elements can be displayed if a plus [+] sign, associated with an element is
clicked. Sub elements become hidden when a minus [-] sign is clicked. It is also possible
to select an element of an array, by changing the element index number. Click once on
the selected index number, type in a new index number and then click the mouse pointer
elsewhere.

When modifying a Project description, the right mouse button menu is used to add, copy,
paste and delete Elements within the MIB. This can be performed from within one Project
description, or between different Project descriptions.

The right mouse menu is object oriented, which means that the functions in the menu
vary, depending on the selected object/element. The principle is, to present only the
functions and tools, applicable to the selected object.

If a NodeType icon is selected, or the Project icon is highlighted, the
specific NodeType or Project can be saved, as a sub-MIB (SMB) file or
as a MIB file. This is achieved by using the Save as menu item from the
right mouse menu.

The saved Type can then be included in another Project description, by
creating an Empty Type and using the right mouse menu item Update
Type.

A SMB file generated by the Process-Pascal compiler can also be
arranged to be included in a Node Type in the project description.

To ensure that all types within a Project description are declared
before they are used, a Consistency check can be performed
(selected by using the right mouse button, when the project icon
is selected).

The result of the Consistency check is automatically displayed in
the form of a dialogue box indicating OK, or by providing a list of
errors.

The Properties for any element are set from the Properties
window, available from the right mouse button menu, when the
element is selected.

502 086 04

26/92 VIGO Manual

2.7 VIGO access control

The access to the different functionality in VIGO can be limited according to the
operators’ responsibility. As an example, the daily operator is limited to only read/write
non-protected variables. The local electrician is trained in how to replace and configure
nodes. Therefore, he is allowed more functionally. The person who has installed the
system can be the supervisor and is allowed unlimited access.

VIGO allows four types of users, each with their own level of access. A Default user
without password protection, User 1, User 2 and Supervisor with password protection.
The names “User1“ and “User 2“ can be changed.
The access level relates to the VIGO window (MIB View, Workspace and MIB Edit), write
access to variables, and availability of programmes in the toolbox (right mouse button)
menu.

502 086 04

Manual VIGO 27/92

Import Of Configuration files
Determines wheter or not the user will be able to import configuration files from the
“Workspace” menu.

The VIGO Window function can be selected to be one of the following:

• Minimized: The VIGO window can not be opened, only shown minimized on the
task bar.

• MIB View: Only the MIB View tab is visible.
• +View Workspace: Means that both the MIB View tab and the Workspace tab are

active.
• +Select Workspace: allows in addition, that different workspaces can be

selected.
• + Edit Workspace and drivers parameters: Allows in addition, that the

workspace and driver parameters can be edited.
• + MIB Edit: Allows the user to edit the MIB, together with all other functions.

Default write access for projects
The write access for the Application programs that use VIGO, can be set individually for
each Project, or a default setting can be used.

If None is selected, no writing to any variable is permitted, but they can all be read.

When To not protected variables is selected, normal unprotected variables can be
written to.

When To all variables is selected, there is no limitation on reading or writing.

Generally, if the property of a variable in the MIB indicates no write access, the above
selection will have no effect, and the result will be no write access to that variable.

Besides the default write access for projects, a Specific write access for project can
be defined. In this way, the write access can be defined individually for each or a specific
project. The write access definition for a specific project will overwrite the default
definition.

The availability of certain Right mouse button programs can be limited for the different
types of users. The right mouse button programs are divided into five groups, and each
of the groups can be selected as available or not. The selection will be directly reflected
on the right mouse button menu when selecting the elements in the MIB using the
MIBOCX.

502 086 04

28/92 VIGO Manual

3 The Common Communication Service Interface

3.1 Single virtual objects
The following section describes the use of VIGO. The description uses as a basis, the
programming language Visual Basic, but this can be translated into Visual C++, Delphi
or Access forms without difficulty.
From a development point of view, it is a simple procedure to create an application, which
has access to the physical objects.

There are only three steps to follow.

Step 1:
The first step is to create a virtual object
recognised by a virtual object identifier. In this
example the virtual object identifier is set to
"Object1".

set Object1 = CreateObject("VIGO.Std")

From now on, the application will point to the
Virtual Object by using the Virtual object
Identifier.

Step 2:
The next step is to
associate the virtual object
with the physical object.

The virtual object within
VIGO, has a property
called PhysId, which
contains the Physical
Identifier.

All information that is necessary to access the physical object will be obtained from the
previously configured Manager Information Base (MIB), by setting the PhysId property.
See the figure above.

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Application #1 Domain

Set Object1 = CreateObject ("VIGO.Std")

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Application #1 Domain

Object1.PhysId = "Valve_1"

Manager
Information

Base
Target

Specification

502 086 04

Manual VIGO 29/92

For example, a valve is the Physical Object, and labelled as 'Valve_1’. In the Manager
Information Base, the 'Valve_1' is used as the Physical Identifier for this valve and
points to the physical Valve.

Object1.PhysId = "Valve_1"

Physical Identifier

VIGO property

Virtual Object identifier

Step 3:

Once the virtual object points to the
physical object, it is possible to operate
upon the physical object. For example,
it is possible to read or write to a
variable.

In the case of the valve identified as
Valve_1, it is now possible to get (read)
or set (write) the state of Valve_1.

The valve state is read using the
following code:

X = Object1.Value

By assigning the Value property of the
virtual object "Object1" to the local
application variable X, X will contain a
Boolean value indicating the valve state
of the physical object.

The valve is closed (set to OFF) using the following code:
Object1.Value = OFF

If the application needs to manipulate another physical object, step 2 and step 3 have to
be carried out again.

For example, to read the value within a physical object uniquely identified as "FlowRate"
and then to read a temperature in a different object, the following code would be used
when using the same virtual object.

Object1.PhysId = "FlowRate"
Y = Object1.Value

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:

"Object1"

X = Object1.Value

Application
#1 Domain

Valve_1

1 4

32

502 086 04

30/92 VIGO Manual

The temperature is known to be found in the Project called SampleProject, in a Node
identified as UPI having an analogue input channel, with the temperature value
contained in the measurement register.

Object1.PhysId = "SampleProject:UPI.ANALOG_IN_1.ANALOGIN"
Z = Object1.Value

3.2 Multiple virtual objects

For an application that needs to
communicate with many physical objects
repeatedly, several objects can be
created.
For example, a device number, a valve
position and a temperature are to be
monitored continuously.

Step 1:
To create multiple virtual objects within
VIGOSERV, The OLE function Create-
Object must be called, for each instance
of a new virtual object.

For example:
Set Object1 = CreateObject("VIGO.Std")
Set Object2 = CreateObject("VIGO.Std")
Set Object3 = CreateObject("VIGO.Std")

Step 2:
The second step is to get the virtual objects to point to the Physical Objects.

The association of virtual objects with physical objects only needs to be carried out once.
This means that the procedure of calling the MIB with the global identifier, in order to
retrieve the related information and apply it to the Target Specification, is only done once.
Following this, the physical objects can be directly manipulated via the virtual objects,
leading to a faster access, because all the network and address information is available
within the Target Specification.

For example:
Object1.PhysId = "Sample:UPI.Service.DeviceId.DeviceNumber"
Object2.PhysId = "ValveState"
Object3.PhysId = "Temperature"

VIGO
Virtual
Object:
Object1

Software
Application #1
eg. Visual Basic

Application #1 Domain

Set Object1 = CreateObject ("VIGO.Std")
 Set Object2 = CreateObject ("VIGO.Std")
 Set Object3 = CreateObject ("VIGO.Std")

Virtual
Object:
Object2

Virtual
Object:
Object3

502 086 04

Manual VIGO 31/92

Step 3:
Now that the virtual objects are
pointing to their associated
physical objects, each of the
three physical objects can be
operated upon via the virtual
objects (Object1, Object2 and
Object3).
The current values for the valve
position, device number and the
temperature can now be
monitored as shown below:

(Read device number)
X = Object1.Value

VIGO
Virtual
Object:
Object1

Software
Application #1
eg. Visual Basic

Object1.PhysId = "Sample:UPI.Service.DeviceID.DeviceNumber"
 Object2.PhysId = "ValveState"
 Object3.PhysId = "Temperature"

Virtual
Object:
Object2

Virtual
Object:
Object3

Manager
Information

Base

Target
Specification

Target
Specification

Target
Specification

Application #1 Domain

VIGO
Virtual
Object:
Object1

Software
Application #1
eg. Visual Basic

 X = Object1.Value
 Y = Object2.Value
 Z =Object3.Value

Virtual
Object:
Object2

Virtual
Object:
Object3

Application #1 Domain

Physical Process

502 086 04

32/92 VIGO Manual

(Read valve state)
Y = Object2.Value
(Read temperature)
Z = Object3.Value

The first assignment will enable the device number to be ascertained from the
application’s local variable X. The second assignment will enable the valve position to be
determined by the local variable Y. The third assignment will ensure that the variable Z
contains the temperature value.

When it is required to update the values several times, only step 3 needs to be carried
out again. No further calls to the Manager Information Base will be carried out, because
all the required data are already contained within the virtual objects.

502 086 04

Manual VIGO 33/92

3.3 Application domains and shared physical objects

Each application accessing VIGOSERV has its own application domain within VIGO. An
application can only access the virtual objects it has created.

If a number of separate applications need to operate on the same physical object, each
application has to create its own private virtual object, and point to the same physical
object as the other applications.

For example, two applications want to access the same measurement value, identified
as "Temperature":

Application #1 (Eg: Excel)
Appl1 = CreateObject("VIGO.Std")
Appl1.PhysId = "Temperature"

Application #2 (Eg:Visual Basic)
Appl2 = CreateObject("VIGO.Std")
Appl2.PhysId= "Temperature"

In this situation, both the virtual objects Appl1 and Appl2, are pointing to the same
physical object.

Different applications may use the same identifier for the virtual object, but VIGOSERV
will still contain a virtual object for each application, as illustrated in the figure below.

VIGO

Virtual
Object:

Object5

Virtual
Object:

Object4

Virtual
Object:

Object1

Software
Application #1
eg. Visual Basic

Virtual
Object:

??

Application #1 Domain Application #2 Domain Application #N Domain

Software
Application #2

eg. Excel

Software
Application #N
eg. Visual C++

Virtual
Object:

Object3

Virtual
Object:

Object2

Virtual
Object:

Object1

502 086 04

34/92 VIGO Manual

3.4 Two ways of accessing variables over the fieldbus

Two different modes can be used to access a physical object. The first mode is called
Direct-access, which sends a command via the network, i.e. a read command, waits for
the result and then returns to the application when the command has finished and data
has been obtained from the physical process system. The Direct-access approach is
shown in the figure below, in the figure to the left.

Physical Process

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Request Data

Application
#1 Domain

1 4

32

Obtain Data

Network Request Network Response

65

Physical Process

Software
Application #1
eg. Visual Basic

VIGO

Virtual
Object:
Object1

Start Operation and
get acknowledge

Application
#1 Domain

1

43

2

Network Request Network Response

Obtain Data in the
Virtual Object

The second mode is called Buffered-access, which also sends a command via the
network, i.e. a read command, but here VIGOSERV will return immediately to the
requesting application before the command has finished and the data has been obtained
from the physical object. After a while, VIGOSERV will return the result to the specific
VIGOSERV property associated with that particular physical object, and it is now up to
the application to read the result. This is shown in the figure above, to the right. To initiate
a request using Buffered-access, two Methods called DoRead and DoWrite are used.
The VIGO object must be created as a VIGO.PRO object to get access to these methods.

The idea behind Buffered-access is to make parallel execution possible. For example,
by initiating the reading of ten different values from the process system, the latest
sampled results held within VIGOSERV can be read later by the application, when
required.

502 086 04

Manual VIGO 35/92

Example using Direct- access:
Read the Valve State

X = Object1.Value

Set the Valve State to OFF
Object1.Value = OFF

Example using Buffered- access:
Start obtaining the Valve State

Object1.DoRead

Later in the user application program, read the Valve State
X = Object1.InValue

Set the Valve State to OFF
Object1.InValue = OFF
Object1.DoWrite

If a new result has not yet been obtained by the virtual object property following a
DoRead, by the time the application requires the use of it, the property will act like Direct-
access. In this case, the return to the application will only occur when the result has been
obtained.

3.5 Operating on Complex Variables

It is possible for the user application to operate on complex variables contained within a
node. In order to do this, it is necessary to understand how the complex data are handled
by VIGOSERV.

VIGOSERV is able to transfer a complex variable from a node into a virtual object, using
a single request from the user application. To do this, the property PhysId already knows
the variable is of a complex type, and by using the DoRead Method, the data is obtained
in the virtual object.

For example, the complex variable "Coordinate" is composed of X_Value, Y_Value and
Z_Value.

Coordinate
 X_Value
 Y_Value
 Z_Value

502 086 04

36/92 VIGO Manual

The physical identifer for the complex variable would therefore be:

Object1.PhysId = “Coordinate”

The next step is to obtain the complex variable from the node, for the virtual object,
Object1.

Object1.DoRead

The above mentioned complex data is now available within the virtual object

To select one of the sub-fields within the complex structure, another property called
SubPhysId must be used. The internal access property InValue is used to operate on
these data elements in the sub-fields.

For example:
Object1.SubPhysId = “X_Value”
X = Object1.InValue
Object1.SubPhysId = “Y_Value”
Y = Object1.InValue
Object1.SubPhysId = “Z_Value”
Z = Object1.InValue

In a similar way to reading the entire complex variable with a single request, it is also
possible to write the complete complex variable, using a single request from the user
application. For example:

Object1.DoWrite

This way of handling complex data structures can reduce the total number of data
transmissions on a network. This feature also gives the ability to obtain information, which
is closely related, and time synchronised.

3.6 Error handling
VIGO provides extensive information about any errors that may occur during each of the
communication tasks and during the use of VIGO.

When using properties or methods for an object, the VIGO system will set an ErrorCode
Property to a value that corresponds to the result of the performed action. The ErrorCode
may relate to errors in communication, conversion errors or errors from searching in the
MIB.

The ErrorCode can be monitored by the application, following any access to a property
or method for the object. If an error occurs, the ErrorCode is set to a unique number. If
no error occurs, the ErrorCode will be SUCCESS (0x0000).

502 086 04

Manual VIGO 37/92

The application can also read the ErrorCode as a text string. The error string is contained
in the ErrorString Property. When reading the ErrorString property, a translation of the
ErrorCode into a text string is automatically performed. If an error occurs, the application
can be programmed to take specific action, as shown in the examples below.

Error handling in VIGO follows the OLE Automation Exception rules contained within the
Microsoft WindowsTM OLE2 specification. When virtual objects are created, Exceptions
are disabled.

It is possible to disable and enable exceptions using the following property for the object:

Object1.EnableExceptions = True (* or False *)

Below is a Visual Basic program example using Exceptions:

Sub Timer1_Timer ()
On Error GoTo ErrorHandler ‘Exception
TempText.Text = Object1.Value

Finish: Exit Sub

ErrorHandler:
TempText.Text = Object1.ErrorString
Resume Finish

End Sub

The example above shows that the error information given by the object property
ErrorString, will be shown instead of the temperature "Object1.Value", in cases where an
error occurs.

Below is a Visual Basic example, where the ErrorCode is monitored following an access
to a read Property:

Object1.PhyId ="Temperature"
Temp = Object1.Value
If Object1.ErrorCode Is SUCCESS Then
 TempText.Text = Temp
Else
 TempText.Text = Object1.ErrorString
End If

The error information given by the object property ErrorString will be shown in the text
field identified by TempText, in cases where an error occurs.

502 086 04

38/92 VIGO Manual

3.7 Error messages and Error Files

The object property ErrorString contains a text string that describes the current error in
plain text. The error may have occurred from within VIGOSERV, an IDC, a network (eg.
P-NET Fieldbus, LAN etc.), the MIB that holds the project description, or the
communication kernel HUGO2.

The error message is converted from an error code into an error message, which is
automatically translated into the same language as that selected on the machine in which
VIGO is running. The error messages are found in files, having the file-extension
corresponding to the language definition specified by Microsoft. A VIGO standard
installation provides texts for Danish and English errors. The text files are found in the
VIGO program folder with the extension DAN and ENG respectively.

If an error text file is not found for the chosen language, a file with the extension ENU will
be selected. The default language for files with extension ENU is set to English.

Copying an existing error text file into another file with the same file name can create an
error text file for a new language, but with a file extension that matches the new
language. The error messages can then be translated into the new language within the
new file.

3.8 Simulation mode

One of the property settings of a VIGO object determines whether specific variables are
located externally within an actual physical node on a network, or are held internally within
the PC for simulation purposes. This property, called "OnLineaccess" can only be set
when using VIGO.PRO.
The state of this property can be assigned from within an OLE compliant application
programme written, for example, in Visual Basic or Delphi.

The corresponding property in the MIB, called "Online access" can also be set to specify
whether variables are located externally or internally.

If the OnLineAccess property for a VIGO object is set to false (not-checked in the
properties window), it means that the value of a particular variable can be read or
modified from an internal location (on the PC), rather than relying on the fact that the
physical node would normally have to be connected. This facility can be extremely useful
during the commissioning and testing phases of a new project. Once one of the
properties have been set, VIGO ensures that any reading or writing to a declared
variable, will be directed to the internal simulated variable. Any additional operations on
this variable, such as, for example, to simulate the incrementing of a counter, would be
arranged using a separate simulation-test program, which will run in parallel with the
application being tested.

502 086 04

Manual VIGO 39/92

3.9 OLE Automation Interface

VIGOSERV has been designed in accordance with OLE Automation rules, defined for the
Microsoft WindowsTM environment. VIGOSERV gives access to object properties and
methods, which can be used by any application supporting OLE Automation. For a virtual
object, a property represents a variable and a method represents a procedure.

Each property offers a pair of functions, one to get (read) the property value and one to
set (write) the property value. Therefore, when object properties are used in application
programmes through VIGOSERV, one of two things are performed:

Set the value of a property (Write)
Get the value of a property (Read)

With most properties, their values can either be read or set according to the needs of the
application. Properties that can be read or set are called read-write properties. Some
properties only allow an application to get their value. These are called read-only
properties.

A method performs an action on an object, and may or may not return a value. Methods
may take a number of arguments. Arguments can be passed by value or by reference.

3.10 Performance

The performance of VIGO is not dependent on the user application, because VIGO is
built for real-time communication, which is performed using interrupts. The
communication task will not stop, even if the loading of a large file is taking place or a
word processing program is being started.

VIGO is able to handle several hundred external data requests per second. However,
performance depends on the efficiency of the underlying network driver and network
performance.

502 086 04

40/92 VIGO Manual

4 Advanced VIGO Programming.

In VIGO version 4.0, there are two 32-bit OLE automation interfaces, structured as InProc
OLE servers.
These interfaces are called VIGO standard and VIGO professional.

VIGO standard is a reduced interface for ease of use, where the number of properties
available is limited to the following: PhysId, Value, ErrorCode, ErrorString. All commonly
used read and write operations can be achieved.
To establish contact with VIGO standard, an OLE automation object must be created,
where the OLE name for the VIGO standard object is "VIGO.STD".
Invoking a particular command, which depends on the programming language being used,
performs this.

In Visual Basic, the command is: Set Obj = CreateObject ("VIGO.STD")
In Delphi, the command is: Obj:= CreateOleObject (’VIGO.STD’);
In Visual C++, the command is: Obj -> CreateDispatch("VIGO.STD");

VIGO professional is used for advanced programming, with an extended set of properties
and methods.
To establish contact with VIGO professional, an OLE automation object must be created,
where the OLE name for the VIGO professional object is "VIGO.PRO".
Invoking a particular command, which depends on the programming language being used,
performs this.

In Visual Basic, the command is: Set Obj = CreateObject ("VIGO.PRO")
In Delphi, the command is: Obj:= CreateOleObject (’VIGO.PRO’);
In Visual C++, the command is: Obj -> CreateDispatch("VIGO.PRO");

502 086 04

Manual VIGO 41/92

4.1 Properties and methods in VIGO professional

A Read of a variable within a node into an application is divided into two steps. First, the
content of the variable is loaded into the Object Data. The next step is to convert the
received data, and then transfer the converted data to the application. A similar situation
occurs to Write, except that the first step is to convert data sent from the application, and
then to store the converted data in Object Data.

4.1.1 PhysId
PhysId is used to relate the VIGO object to a variable within a Node. Assigning the Global
Identifier to the PhysId will achieve this. The normal format for a Global Identifier is:

 ProjectIdentifier:NodeIdentifier.ChanneIIdentifier.Register…

If the global Identifier does not contain a ProjectIdentifier, the default project selected in the
Workspace tab in VIGO will be assumed.

Writing to this property will start a search in the MIB. This search will return all the
necessary information about the variable, such as the Addresses and Offsets needed to
access the variable within a particular Node.

Writing to the PhysId property will resize and clear the Object Data to zero.

Application

Fieldbus

Object Data

SubPhysID is
used to select part
of the Data in the

object.

Read:
InValue

Write:
InValue

PhysID is used to
select a complex or
simple variable in a
Node, used by the
communication.

DoReadDoWrite

Read:Value is a
sequence of
DoRead and
Read: InValue

Write:Value is a
sequence of
Write:InValue and
DoWrite

Data conversion

502 086 04

42/92 VIGO Manual

The following Properties of an object are set according to the contents of the MIB:

NodeAddress, InternalAddress, Offset, BitNo, ICDNo, Size, ObjectType, DataType,
NodeCapabilities.

DoRead/ DoWrite methods, or a read/write of the Value property, will use these properties
when accessing Variables in Nodes via the fieldbus.
The following assignments are also performed:

SubOffset= 0
SubDataType= DataType ,
SubBitNo= BitNo,
SubSize=Size

These properties are used when reading/writing to the Value and InValue properties.

The result of the search in the MIB, will also set the following properties:

ReadAccess, WriteAccess, OnLineAccess

The ErrorCode will be set, depending on the result of the search in the MIB.

4.1.2 SubPhysId
SubPhysId is used to specify a sub-part of a complex variable already specified in PhysId.

The SubPhysId must be assigned with the additional .Identifier , e.g. a record field
identifier. The PhysId can be set to point to a complex array-variable. The SubPhysId
property can then, for example, be used to specify a specific array element.

The SubPhysId property cannot hold: Project, Node, Channel, Register or SwNo, only
Array [index] ’s and Record field Identifiers. The PhysId must be pointing to at least a
SwNo or a Register in a Channel, before SubPhysId can be used to select part of the
SwNo or the Register.

Writing to the SubPhysId property will start a search in the MIB, to get the value of the
following properties: SubOffset, SubDataType, SubBitNo, SubSize.
No other properties are affected, including Object Data.

If the SubPhysId is set as an empty string, the following assignment is performed:
SubOffset= 0, SubDataType= DataType, SubBitNo= BitNo, SubSize=Size.

The ErrorCode will be set according to the result of the search in the MIB. The properties
set by SubPhysId have an influence on the access, when using the InValue property and
Value property.

502 086 04

Manual VIGO 43/92

Read/Write to InValue:

If SubPhysId is empty, the entire variable specified by the PhysId will be transferred
between the application and the VIGO object.
If SubPhysId is not empty, only the part of the variable specified by the SubPhysId, will
be transferred between the application and the VIGO object.

4.1.3 InValue
InValue represents a sub-part of the variable in Object Data, as specified by the
SubPhysId. The InValue property is declared as a Variant type, and can handle all kinds
of data (Integer, Real, String, Arrays, etc.). A Read of this property will return the specified
part of the internal variable in the VIGO object. Similarly, a Write will write to the Object
Data. There is no fieldbus communication.

When reading InValue, VIGO converts the part of Object Data specified by the
SubDataType, and returns this data as a Variant. A part of this conversion task, is also to
swap the bytes, according to the little/big endian principle (Intel/Motorola). The data-
conversion is ONLY performed on simple data-types (Boolean, byte, integer, real...). It is
therefore not recommended to use InValue on complex variables.
In the same way, a Write to InValue, will convert the Variant from the application to the
correct data type appropriate for the variable in the field device, and will then store the data
in the internal Object Data.

If the SubPhysId holds a part of an identifier, only the part specified by the SubPhysId will
be transferred between the application and the object.

4.1.4 DoRead
The DoRead method is used to load a variable from a node into Object Data. The variable
is specified by the properties set by PhysId (NodeAddress, InternalAddress, Offset,
BitNo, Size, ObjectType, DataType, IDCNo, NodeCapabilities). The data is NOT
converted.

DoRead starts the communication, and then immediately returns to the calling application.
The Data will arrive later in Object data. If a new DoRead is started, within the same VIGO
object, before the previous DoRead or DoWrite has been completed, the process will not
return to the application, before the former DoRead/DoWrite is completed and the new
DoRead has been started.

The DataReady property will be FALSE, until a completed response from the Node is
received.

502 086 04

44/92 VIGO Manual

4.1.5 DoWrite
The DoWrite method is used to transfer the data from Object Data into a variable in a
node. The variable is specified by the properties set by PhysId (NodeAddress
InternalAddress, Offset, BitNo, Size, ObjectType, DataType, IDCNo,
NodeCapabilities). The data is NOT converted.

DoWrite starts the communication, and returns immediately to the calling application. The
response will arrive later. If a new DoWrite is started, within the same VIGO object, before
a previous DoRead or DoWrite has been completed, the process will not return to the
application before the former DoRead/DoWrite is completed and the new DoWrite has
been started. The DataReady property will be FALSE, until the completed response from
the Node is received.

4.1.6 Value
Value is a property, representing the variable specified by PhysId and the SubPhysId.
The Value property is declared as a Variant type, and can handle all kinds of data (Integer,
Real, String, Arrays, etc.).

A Read or Write to this property is equivalent to a read or write to the variable. VIGO
returns to the calling application when the data is available, or when no response has been
received after a timeout of a maximum of two seconds.

During a Write to Value, VIGO takes care of converting the Variant received from the
application into the correct data type appropriate for the variable in the field device. It also
swaps the bytes according to the little/big endian principle (Intel/Motorola). When reading
Value, VIGO converts the loaded data into a Variant, using the properties set by
SubDataType. The data conversion is ONLY performed on simple data types (Boolean,
byte, integer, real etc.). It is therefore not recommended to use Value on complex
variables.

A Read to Value is performed by first calling DoRead, followed by Reading InValue,
A Write to Value is performed by Writing to InValue, followed by calling DoWrite.

If the SubPhysId is not empty, only the part specified by the SubPhysId will be transferred
between the application and Object Data, but the whole variable will be transmitted on the
network to/from the Node. Be careful if SubPhysId is not empty when using Value ! Some
of the data in the object may be zero.

4.1.7 ExAnd (And)
The ExAnd property is a P-NET specific property, to AND a value to a variable in a P-NET
module. The ExAnd property is declared as a Variant type. Writing to this property will
perform a logical AND function between Data written to the property and the Data already
in the variable. The result is stored in the Variable.

502 086 04

Manual VIGO 45/92

4.1.8 ExOr (Or)
The ExOr property is a P-NET specific property, to OR a value to a variable in a P-NET
module. The ExOr property is declared as a Variant type. Writing to this property will
perform a logical OR function between Data written to the property and the Data already
in the variable. The result is stored in the Variable.

4.1.9 TestAndSet
The TestAndSet property is a P-NET specific Read Only property, to Test-And-Set a
Boolean in a P-NET Node. Reading this property will start a special communication service
that reads and sets the Boolean true in the Node. The result of the reading is returned to
the application as a Variant.

4.1.10 ErrorCode,
ErrorCode is a Read Only property of the type Integer (2 bytes). This property indicates
whether an error has occurred, after accessing certain properties and methods.

ErrorCode = 0 indicates that there is no Error. If the ErrorCode <> 0, this indicates, that
some aspect of a transfer has been found to be incorrect.

The following properties and methods will generate an ErrorCode:
PhysId, SubPhysId, Value, Invalue, DoRead, DoWrite, Download, Upload,
ProgramState, ModelName, Revision, Programname, NodeAddress, Vendor,
Start, Stop, Reset, Resume, Kill, SelectProgram, UnSelectProgram,
DeleteDomain, TerminateDownload, ExAnd, ExOr and TestAndSet.

The ErrorCode is not changed until one of the mentioned VIGO properties or methods is
used again. The ErrorCode can be read as error text in the ErrorString property.

4.1.11 InformationInErrorCode
This Boolean property controls if Historical Errors are visible in the ErrorCode. If
InformationInErrorCode is set to TRUE, then Historical Errors are also visible in
ErrorCode. The default value for InformationInErrorCode is FALSE.

4.1.12 ErrorString
The ErrorString is defined as a Read Only string (max 150 characters). In reading this
property, a text string will be returned, containing an explanation of the ErrorCode. The
language of the error string depends on the language that has been selected on the
machine. If the selected language is not supported in VIGO, English will be chosen.
If the ErrorCode is zero, the ErrorString will be empty.

502 086 04

46/92 VIGO Manual

4.1.13 DataReady
DataReady indicates whether a DoRead, DoWrite, Upload or Download cycle has
finished. DataReady should be tested before a new DoRead or DoWrite is used on the
same object, DataReady returns False when a DoRead or DoWrite method is in
progress. DataReady returns to the calling application immediately.

4.1.14 SetMessage
This method is used to set up a message that will be sent when a DoRead or DoWrite
on the particular object has finished.
The method is called with four parameters:

SetMessage(parameter1, parameter2, parameter3, parameter4)

1. parameter: Type "Long".
Handle of Window that the message will be sent to.

2. parameter: Type "Long".
MessageNumber that will be posted after DoRead/DoWrite has finished.

3. parameter: Type "Long".
Optional userdata. This value will be posted along with the message itself
as the wParam of the Windows message.

4. parameter: Type "Long".
Optional userdata. This value will be posted along with the message itself
as the lParam of the Windows message.

An application can call this method before starting a DoRead or DoWrite. This way it is
not necessary for the application to continuously call DataReady to check if the
DoRead/DoWrite has finished. The SetMessage method must be called before starting
the DoRead or DoWrite.

4.1.15 EnableExceptions
If EnableExceptions is set TRUE, all errors from VIGO will perform an Error Exception
in the client program. The client program must then handle the exception.

The default value for EnableException is FALSE.

The ErrorCode and ErrorString can then be read by the Exception handler.

502 086 04

Manual VIGO 47/92

4.2 Properties set by PhysId
PhysId normally sets the following properties. These properties can be read, and by doing
so, the MIB can be checked. In very special situations, the application program can, with
care, write to these properties.

4.2.1 InternalAddress
The InternalAddress property is designed to hold the “internal address” of a variable in
a Fieldbus module.
For P-NET, the “internal address” is a softwire number, but it can also be a physical
address in a module. If PhysAddress is true, a physical address is assumed.
The InternalAddress is used by DoRead, DoWrite, Download and Upload, and
indirectly by Value.
InternalAddress is automatically set when writing to a PhysId.

4.2.2 BitNo
The BitNo property is used to select a single bit in a BitArray. This property is used when
accessing a field device. The BitNo is used by DoRead, DoWrite and indirectly by Value.
It is automatically set when writing to a PhysId.
Writing to the BitNo property will copy BitNo to SubBitNo.

4.2.3 Offset
The Offset property is used to specify a byte offset within a complex variable in a Node.
When a record field within a larger complex variable is to be selected, the offset specifies
the position of the first byte of this field within the record. Offset is used by DoRead,
DoWrite, Download and Upload and indirectly by Value.

When the Offset property is changed, SubOffset is automatically set to 0.

The offset is automatically set when writing to a PhysId.

4.2.4 Size
The Size property indicates the size of the Variable (in bytes), to be accessed via the
fieldbus. It indicates to the communication stack the number of bytes to be transferred.
It is also used to allocate memory for the VIGO object. Size is used by DoRead, DoWrite
and indirectly by Value.

Size is automatically set when writing to a PhysId.

Writing to the Size property will copy Size to SubSize.

502 086 04

48/92 VIGO Manual

4.2.5 ObjectType
The ObjectType property holds an integer value associated with a particular type of
object. The object type is used to identify whether the object (specified by PhysId), is a
particular type of Node, Channel, SwNo, or Register. As an example, all the different
Channel types have different object type numbers. The ObjectType should reflect the
actual data type in the field device.
An application program can use this property for testing the object type. For example, the
download program can only work with a Program Channel as the target. A list of Object
types for channels and modules can be found in the Appendix.

ObjectType is automatically set when writing to PhysId.

4.2.6 DataType
The DataType property holds an integer value, which defines a particular data type. This
object type should reflect the actual data type in the field device. It is not used for data
conversion. A list of data types can be found in the Appendix.

DataType is automatically set when writing to PhysId.

4.2.7 WriteAccess.
The property WriteAccess holds the status of a variable, selected by PhysID. When
writing to PhysId, this property is set to True, if all elements in the Global Identifier have
“Write Access” checked (Project, Node, Channel, Register or SwNo) else it will be set to
False.

4.2.8 ReadAccess.
The property ReadAccess holds the status of the variable, selected by PhysID. When
writing to PhysId, this property is set to True, if all elements in the Global Identifier have
“Read Access” checked (Project, Node, Channel, Register or SwNo), otherwise it will be
set to False.

4.2.9 OnlineAccess
OnlineAccess is a Boolean property, used to indicate whether a DoRead, DoWrite or
indirectly by Value, shall access an external Node or an internal simulation file. If
OnlineAccess is True, there will be communication on the Fieldbus network. If
OnlineAccess is false, the data will be read from or stored in a simulation file. When
writing to PhysId, this property is set to True, if all elements in the Global Identifier have
“OnlineAccess” checked (Project, Node, Channel, Register or SwNo), otherwise it will
be set to False.

502 086 04

Manual VIGO 49/92

4.2.10 ProtectedWriteAccess.
This property reflects the state of the “Protected” checkbox of the variable selected by
PhysID. ProtectedWriteAccesss = True, means that the variable is protected by Write
Enable. It is also used to prevent the user accessing variables with
ProtectedWriteAccess, when VIGO Access is not granting write access to write
protected variables.

4.2.11 NodeCapabilities
The NodeCapabilities property informs the IDC which protocol limitations that shall be
used for read or write to a specific Node.
The value in NodeCapabilities depends on the format that can be used on specific
Fieldbuses. A list of the capabilities numbers for P-NET can be found in the Appendix.
NodeCapabilities is used by DoRead, DoWrite and indirectly by Value. It is
automatically set when writing to PhysId.

4.2.12 NodeAddress
The NodeAddress property holds the full address of a Node on the Fieldbus. The format
for the Node address must follow the HUGO2 standard for building a Node address.
NodeAddress is automatically set when writing to PhysId.

4.2.13 MaxRetry
Reserved for future use.

4.2.14 PhysAddress
The PhysAddress property is of type Boolean. When the property is set TRUE, VIGO
will inform the PNET IDC to use physical addressing, instead of logical addressing.
The physical address used must be written in the InternalAddress property.
This property is set false when writing to PhysId.

4.2.15 IDCNo.
The IDCNo property must hold the number for the IDC that is appropriate for the target
Node. PhysId normally sets this property. This property should only be accessed in very
special circumstances.

4.3 Properties set by SubPhysId

SubPhysId normally sets the following properties. These properties can be read, and
by this means, the MIB can be checked. In very special situations, the application
program can, with care, write to these properties.

502 086 04

50/92 VIGO Manual

4.3.1 SubBitNo
The SubBitNo property is used to select a single bit in a BitArray. This property is used
when the application exchanges data with the VIGO object, and the data type is a Bit
array. The SubBitNo is used by InValue and indirectly by Value.

SubBitNo is automatically set when writing to PhysId or SubPhysId.

4.3.2 SubOffset
The Suboffset property is used to specify the byte offset within a complex variable,
located in a VIGO object. When a record field within a larger complex variable is to be
selected, the offset specifies the location of the first byte of this field within the record.
The SubOffset is used by InValue and indirectly by Value.

SubOffset is automatically set when writing to a PhysId or SubPhysID.

4.3.3 SubSize
The SubSize property indicates the size (in bytes), of the selected part of the Variable in
the VIGO object. This property is used when the application exchanges data with the
VIGO object. The SubSize is used by InValue and indirect by Value.

SubSize is automatically set when writing to PhysId or SubPhysId.

4.3.4 SubDataType
The SubDataType property holds an integer value that identifies a particular data type.
The number should reflect the actual data type of the selected part (SubPhysId) of the
variable in the VIGO object. This SubDataType is used by the conversion function when
the application exchanges data with the VIGO object. A list of data types can be found
in the Appendix. When writing to PhysId or DataType, the new value of DataType is
copied to SubDataType.

The SubDataType is used by InValue and indirectly by Value.

4.4 RACKS (MMS) related properties and methods

4.4.1 Vendor
This Read only property will return the name of the Vendor of the Node selected by
PhysID.

502 086 04

Manual VIGO 51/92

4.4.2 ModelName
This Read only property will return the model name of the Node selected by PhysID.

4.4.3 Revision
This Read only property will return the revision of the Node selected by PhysID.

4.4.4 ProgramState
The ProgramState property follows the MMS standard, and is used in Program channels.
These channels must be of object type 11, otherwise ProgramState cannot be used.

Further information about ProgramState can be found in the manual for any of the nodes
that have a program channel.

4.4.5 ProgramName
The ProgramName property follows the MMS standard, and is used in Program
channels. These channels must have the ObjectType property set to 11, otherwise
ProgramName cannot be used.

Further information about ProgramName can be found in the manual for any of the nodes
that have a program channel.

4.4.6 FileName
This property is of type string. It is used to hold a path to a file when Download or
Upload is called.

4.4.7 Progress
Progress is a Read Only property of Integer type, that holds the number of bytes
transmitted in percentage of the total number of bytes, to be transmitted. The Progress
property is valid with Download or Upload.

The Progress property is very useful, for indicating to the user that the data transmission
is still running.

4.4.8 StopSequence
The StopSequence method can stop a data transmission, which has been started with
DoRead, DoWrite, Download or Upload.

4.4.9 Download
This method is used to download a program to a standard Program Channel. The paths
must be set prior to its use, in Filename.

502 086 04

52/92 VIGO Manual

4.4.10 Upload
This method is used to upload a program from a standard Program Channel. The paths
must first be set in FileName. This method is not implemented in VIGO 4.0.

4.4.11 DeleteDomain
This method is used to delete the selected domain in a standard Program Channel. The
domain must be selected first.

4.4.12 Start, Stop, Resume, Reset, Kill
These methods can be used with a standard P-NET Program Channel. They provide
equivalent name functions, as described in the standard for the Program Channel.

502 086 04

Manual VIGO 53/92

5 VBMon

The VBMon program is a service tool for monitoring fieldbus variables, and to enable
parameters to be configured within fieldbus based control systems. The monitor can be
used to both display and modify the value of variables. Variables are usually identified
using a globally recognised name, called the Physical Identifier (PhysId).

The monitor can display the value of many variables at the same time, each one allocated
to a separate line.

Specified variables can be located within different projects, nets and nodes. Normally,
each line is divided into three fields: Physical Identifier, Type and Data. An optional
Offset field can also be shown. The width of the Physical Identifier, Offset and Data
fields, can be adjusted by dragging the vertical line shown between the Type and Data
fields, and by re-sizing the window.

The Physical Identifier field is used to define which variable to display. Double clicking
a line in this field will cause it to change into a white editing field, which also includes a
MIB button. The contents of the Physical Identifier field can now be keyed in manually,
or alternatively, by pressing the MIB button. The required variable can now be selected
from the project structure. The format of a Physical Identifier entry would normally consist
of a "project name" followed by a colon, then the rest of the identifier, which includes the
node name and the variable name. For example: "Test:UPI1.SERVICE.WDTIMER". The
project identifier and the colon can in fact be omitted. It is then assumed that the Default
Project, as previously specified, will act as the project identifier.
The MIB is used to convert the Physical Identifier into the actual "address", required to
access the variable.

502 086 04

54/92 VIGO Manual

5.1 The Type Field
Under normal circumstances, the MIB also returns the data type of the variable in
question, which is then automatically inserted into the Type field. In certain cases, it may
be preferable to manually key in a Softwire number. This can be achieved, by formatting
the Physical Identifier as: Project identifier: "Node identifier.Softwire number". For
example, "SampleProject:UPI1.18" (or UPI1.$12 in Hex) In this case, the data type must
also be set manually. Clicking the right mouse button from within the Type field will
produce a list of available data types for display. Clicking on one of these will insert the
data type name into the Type field, and the displayed variable will be formatted as such.

If the Physical Identifier specifies an Array or Record, the Type field
shows "-----", because it is not possible to present the complete value
of a complex variable.
When accessing a variable using a softwire number, or part of a
complex variable using an offset, the data type must be selected
manually. As previously described, this is done by clicking the right
mouse button within the Type field, and then selecting the
appropriate data type. If the selected data type differs from the data
type specified in the MIB, it is shown enclosed in brackets, e.g.
[LongInt], and the readings seen may be unpredictable. By selecting
Default, the type specified by the MIB is used.

5.2 The Offset Field
The value within this optional field is always assumed to be zero, for variables of simple
data type. For variables of complex type (array or records), the Offset field can be used
to manually define an offset, in bytes, to a sub element of the variable. Double clicking
within the Offset field, enables the offset value to be changed from zero. However, this
means that the Physical Identifier no longer fully represents the data value displayed.

5.3 The Data Field
This field displays the value of the variable, pointed to by the Physical Identifier field. A
check box in the field is used to enable automatic updating of data values. The refresh
rate can be specified in the Options menu. The default rate is two updates per second.

Writing a value to a variable is performed by double clicking on the appropriate Data field
line, entering the new value, and then pressing Enter.

The readout format can be selected to be in either Decimal (default),
Hexadecimal or Binary, for the following data types: Byte, Integer, Long
Integer and Word. The number of digits displayed after the decimal point
can be selected for variables of the Real data type The selection can be
made by using the right mouse button, when the cursor is pointing to a particular value
in the Data field.

502 086 04

Manual VIGO 55/92

If an error message or any other information relating to a variable is received, these are
appended in the Data field. As default, only error messages are shown. Display of
additional information can be enabled from the Options menu.

5.4 Main menu

5.4.1 File
The File menu contains the following items, which all relate to VBMon
screen layouts.

File:New This function creates a screen layout with five empty lines. The
insert item in the Edit menu can be used to add extra lines.

File:Open The Open function reloads the screen layout from a previously saved file. The
included identifiers will automatically be converted into the "address" needed to access
the variable. This is performed using the contents of the MIB, and will therefore reflect
any changes that have been made to the MIB since the last screen save.

File:Save The Save function will store the screen layout parameters together with the list
of included Identifiers. Such files are saved with the file extension .scr.

File:Save as This provides an opportunity to store the screen layout as a file, having a
specified name and path.

File:Exit is used to close the program. When the monitor is closed, the current screen
layout is automatically saved in a file, as the default screen layout. Next time the monitor
is started, the default screen layout is automatically loaded.

5.4.2 Edit
The Edit functions are used to customise a screen layout. They apply
to the currently selected line. One or more lines are selected by clicking
on them with the left-hand mouse button, which will then be highlighted.
The Edit menu can also be made available, by clicking the right mouse
button, when the pointer is within the Physical Identifier field.

Edit:Insert The Insert function will insert an empty line above the selected line.

Edit:Delete The Delete function will delete the selected line.

502 086 04

56/92 VIGO Manual

Edit:Cut The Cut function will delete the selected line, and save the line in the
clipboard.

File:Copy The Copy function will save a copy of the selected line in the clipboard.

Edit: Paste The Paste function will insert a line from the clipboard above the selected
line.

5.4.3 Options
The default fields in a VBMon line are: Physical Identifier, Type and
Data. However, it is possible to customise the lines using the Options
menu.

Options: Show Offset is used to enable the Offset field. The Offset field is disabled as
default.

Options: Show types is used to enable the Type field. The Type field is enabled as
default.

Options: Enable Info. When reading or writing to a variable, an error message and/or
other information relating to the variable, may be received from the node.
An error message is always appended to the Data field. Activating the Enable info
function will also append any additional information to the Data field.

Options: Refresh rate. The refresh rate is defined as the number of full
screen (all lines) updates per second. The refresh rate has a default value
of 2 Hz, meaning that all values in the data field will be updated twice each
second. The refresh rate can be selected from one of the following: 1, 2,
5 and 10 Hz. Selecting a low frequency, will reduce data traffic on the bus.

5.4.4 Help
Guidance in using VBMon is available from the Help menu.

502 086 04

Manual VIGO 57/92

6 P-NET Tools

A number of tools that are specifically used in conjunction with the P-NET Fieldbus, are
available in the VIGO program package. Some of the more general-purpose tools that
can be used with all P-NET standard modules are described in this chapter.

6.1 Set P-NET Node Address

Each P-NET node that is located within a
single bus segment must be configured with
a unique node address. P-NET nodes are
normally shipped from a manufacturer with
the node address set to zero. Since node
address zero is not permitted to be used for
normal communication, the connection of
such a node will not interfere with any of the
other nodes already running on the network.
When a new node is connected to the
network, the desired node address can be
set, by using a special feature of P-NET.
Sending a broadcast message to all nodes,
consisting of the new node address, together with the serial number of the node in
question performs this.

The purpose of this program, is to enable the setting of the node address within a
physical node, by means of using it’s serial number.

This program is launched from the MIB browser MIBOCX, by selecting it from the right
mouse button menu, when a Node is highlighted.

Selecting a different Node in the MIBOCX (by activating the MIB button), will
automatically update the Node Identifier in the Set P-NET Node Address program
window, and will display data about that node.

If the node is recognised as a P-NET master module, a No. Of Masters field is also
shown. This indicates the maximum number of masters currently allowed to be connected
to the network segment.

The node in question must be included in the project description in the MIB, and it’s
properties must also be set correctly, including the desired node address.

502 086 04

58/92 VIGO Manual

When the program is opened and a node is selected, the following four situations can
occur:

1: If the node specified in the Node-Identifier field cannot be found at the node address
as specified in the MIB, the serial number of the should be keyed in, and then the Apply
button should be pressed. The function of the Apply button is to send a broadcast
message to all nodes, commanding the node with serial number xxxxxxx, to set its node
address to the attached value. If a node with the specified serial number is found, the
Node info for the module in question will be shown.
If contact with the node cannot be established, the Node info field will display "No contact
with Node". If this is the case, it should be checked that the serial number of the module
is correct, and that the module has been correctly connected to the network.

2: A node is found on the network, and the serial number and the Node info is
automatically displayed for that node. If this information corresponds to what is required,
as specified in the MIB, the communication parameters for the node are correctly set up,
and no further action needs to be taken.

3: A node is found, and the Node info is shown, but the node is not the expected node
as specified in the MIB. This indicates that the node has been configured with the wrong
node address, and it must be removed to ensure future communication integrity. By
pressing the Remove button, the node is removed from the network as far as
communication is concerned. This is done by setting the node address to zero. The Node
info will now display "No contact with Node" and situation 1 will now apply.

4: A node is found, and the Node info is shown, but the node is not the expected node
as specified in the MIB, or random communication errors occur. This could mean that two
or more nodes are configured for the same node address, and these nodes should be
removed and re-configured to maintain communication integrity.

Guidance for selecting Node Address and No of Masters for a Project
The P-NET node address can be in the range from 1 to 125. The No. of Masters can be
in the range from 1 to 32. The lower numbers are reserved for Master modules. Node
addresses for Slaves must always be higher than the No. of Masters.
If for example a project consists of 5 Master modules and 15 Slave modules, the No. of
Masters and Node Addresses could be selected in the following way:

No of Masters = 6 (one master number is reserved for future extension)
Node Address for the Master modules are then in the range from 1 to 6
Node Address for the Slave modules are then in the range from 7 to 125

Help
Help on the use of the Set P-NET Node Address, is provided from the Help menu. The
help file consists mainly of parts of this manual.

502 086 04

Manual VIGO 59/92

6.2 Channel Configuration

The purpose of this utility program is to enable a node channel to be configured,
maintained and monitored. It is launched from the MIBOCX using the right mouse button
menu, when a channel is selected.

The Channel Configuration program is designed to recognise a number of standardised
channels.

This provides the
user with a
convenient way of
configuring the
various channels,
which make up a
module.
The Channel
configuration
window is divided
into three sections.
The upper section
contains the PhysId
field, which displays
the identity of the
Channel. The Write
enable check box is
common for the
entire node and
must be checked, to
allow the contents
of configuration
registers to be
changed.

The middle section consists of a number of tab sheets, each containing a formatted view
of the various configuration registers, enabling ease of amendment or monitoring.
The lower section provides a display of real-time values, which are specific to the
selected channel type. Although the values shown depend on serviceable communication
and the state of the current process associated with the channel, many can be amended
locally, using the PC keyboard or mouse, e.g. resetting a counter to zero, or changing the
state of a digital output.
The ability to display a particular channel configuration screen, depends on that channel
type being included and selected within a node already defined in the MIB project file.
Screens are available for the following Channel types: Service, Digital I/O, AnalogIn, PID,
AnalogOut, Weight, Communication and Program Channel.

502 086 04

60/92 VIGO Manual

6.3 Program Download

The purpose of this program is to provide the means to download program code, i.e.
Process-Pascal code or Calculator Assembler code. The code can be downloaded to all
modules supporting a P-NET standard Program Channel, such as the PD5000 series of
controllers from PROCES-DATA A/S. Program Download is called from the MIBOCX
using the right mouse button menu, when a Program Channel is selected.

The Program Download
utility also supports the
downloading of Calculator
programs, to other
modules supporting the
P-NET standard Program
Channel, such as the
PD3120 module.
When this program has
been launched via the
MIBOCX, the Channel
identifier is automatically
inserted. Pressing the MIB
button and selecting a new
Program Channel can
change the identity of a
Channel. A File browser
can be opened for selecting a Code file by pressing the FILE button The node to which
a program is to be downloaded, must first be defined in the MIB, before a download can
proceed.

Clicking the Details button opens a window, from where the selected program can be
stopped, started, killed etc. In addition, the Actual size, Max size, Code type, and Version
of the program in the selected library can be seen.

6.3.1 Channel
The Channel combo box is used to insert the name of the channel, to which a program
is to be downloaded. The selected channel must be a standard Program Channel, of
object type 11. The object type is defined in the MIB. If the selected channel is not of
object type 11, a message box will display "Error in PhysId name".

A channel identifier can be selected using four alternative methods. When this program
has been launched via the MIBOCX, the channel identifier is automatically inserted. The
channel Identifier can also be inserted from the MIB by clicking the MIB button, and then
double clicking on a channel name within the MIBOCX. It can be included as a start up
parameter for Program Download, or it can be directly keyed in into the combo box.

502 086 04

Manual VIGO 61/92

When a new channel identifier is inserted, it will always become the highlighted item in
the Channel combo box list. The selected item will be inserted at the top of the list. If the
selected channel was not previously included in the list and the list is full, the oldest
channel identifier will be deleted. Once a channel identifier is included in the combo box,
it can be easily selected from the list, which can hold up to 6 channel identifiers.

6.3.2 Code file
The Code file combo box is used to specify the file to be downloaded. The extension is
normally ".COD" for e.g. Process-Pascal programs and Calculator programs, or " CXE
" for calculator programs developed under Windows 3.11. The selected code file must
contain the kind of program code expected by the selected channel. The code type is
checked prior to the program being downloaded.

A code file name can be inserted in the Code file combo box using three methods. The
code file name can be included as a start up parameter for Program Download.
Alternatively, it can be selected from the Open file dialog, by clicking the FILE button, or
it can be directly keyed in into the combo box.

When a new file name is inserted, it will always become the highlighted item in the Code
file combo box list. The selected item will be inserted at the top of the list. If the selected
file was not previously included in the list and the list is full, the oldest file name will be
deleted. Once a file name is included in the combo box, it can be easily selected from the
list, which can hold up to 6 file names.

6.3.3 Autostart after reset
The Autostart after reset check box, defines how the selected program will behave,
following a reset being applied to the node holding the program. If Autostart is checked,
the selected program will perform an auto start after a reset. If it is not, the selected
program will be put in the Idle state after a reset. The check box reflects the state of
ChConfig.EnableBit[0] in the Program Channel.

Some node types can hold several programs within a library. With PD controllers, these
programs can be stored in different memory types. The list box adjacent to Autostart
after reset, defines which program will be started, if Autostart after reset is checked.

The list box reflects the value of ChConfig.Ref_A in the Program Channel. The state of
the Autostart check box and list box can only be changed, if Write enable is checked.

502 086 04

62/92 VIGO Manual

6.3.4 Selected library
The selection in the Library list box defines, to which library domain the program is to be
downloaded. The list shows the possible choices for the selected channel. The possible
values are read from the selected channel, in the variable called MemoryInfo.

The Name and State fields in the Library panel show the name and state of the selected
program in the library. The library list can also be used to monitor the names and states
of other programs in the library. Library State can take the following values:

0: Non-existent
1: Loading
2: Ready
3: In-use
4: Complete
5: Incomplete
14: Deleting

The Selected library list box reflects the value of LibraryStatus.LibraryIndex in the
Program Channel. When a new value is selected, it is stored in
LibraryControl.LibraryIndex in the Program Channel.

6.3.5 Selected program
The Selected program list box is used to select a program. The list shows the possible
values for the selected channel. The possible values are read in the selected channel,
in the variable called MemoryInfo.

If a program is already running when selecting a new program, the running program will
be stopped and killed, and the new program will be selected, which will be put into the
Idle state.

After selecting a program, the program can be started by pressing the Start button.

The Name and State fields in the Program panel show the name and state of the
selected program. Program state can take the following values:

0: Non-selected
1: Unrunable
2: Idle
3: Running
4: Stopped
5: Starting
6: Stopping
7: Resuming
8: Resetting

502 086 04

Manual VIGO 63/92

The Selected program list box reflects the value of ProgramStatus.SelectedProgram in
the Program Channel. When a new value is selected, it is stored in
ProgramControl.ProgramToSelect.

6.3.6 Download button
Before downloading, a channel must be specified, a code file and a library must be
selected, and Write enable must be checked. Clicking the Download button starts the
downloading procedure, for the code file selected in the Code file combo box, to the
channel and library defined in the Channel combo box and the Selected library list box.

If the download parameters specify a memory area that is already in use, by being in a
state of e.g. running or selected, a message box showing ’Selected library in use !
Continue ?’ will appear. If Yes is selected, the program that is currently running or
selected, will be stopped and killed, and the new program will be downloaded.

6.3.7 Start button
Clicking the Start button will start the Selected program. Clicking the Start button only
has an effect, if a program is selected, and the program is in the Idle state.

6.3.8 Write enable
The Write enable check box enables the values in ChConfig of the selected channel to
be changed, using the values available in the Autostart after reset in list box. Write
enable must also be checked to download programs.
If Write enable is not checked, Autostart after reset and Download are disabled, and
greyed out.

6.3.9 Details
Pressing the Details button opens a window with more
detailed information about the selected channel. The
Program field in the Download details window provides
buttons to Start, Stop, Resume, Reset, Kill and
Unselect the program defined in the Selected program
list box.

The Library field in the Download details window,
shows Actual size, Max size, Code type and Version
of the program defined in the Selected library list box.
The Library field also includes a Terminate button,
which will terminate downloading to the selected library,
and a Delete button, which will delete the program in
the selected library.

502 086 04

64/92 VIGO Manual

6.3.10 Starting the Download Utility from a shortcut
Program Download is normally started from within the MIBOCX, via the right mouse
button menu, when a Program Channel of object type 11 is selected. If this method is
used, the identity of the selected Program Channel will be automatically inserted into the
Channel combo box.
Program Download may also be started up using a previously prepared shortcut. Using
this method, it is also possible to include two parameters. The first parameter is the
PhysId of the channel to which the program code is to be downloaded. The value of this
parameter will then be automatically inserted in the Channel combo box. The second
parameter is the name of the code file to be downloaded. The value of this parameter will
be automatically inserted in the Code file combo box. The parameters can be included
by selecting Properties of the shortcut icon and appending them to the command line.

When the Program Download tool is closed, the contents of the Channel and Code file
combo boxes are saved in a file called {PD}PROGRAMDOWNLOAD.CFG. This file is
placed in the current folder, which would typically be the VIGO folder. When Program
Download is started again, the contents of the 2 combo boxes will be restored, if no start
up parameters have been given.

6.3.11 PD5000 Controller
A PD5000 controller has two Program Channels, OPSYSCH and PPPROGCH.

OPSYSCH holds the controllers’ operating system, and PPPROGCH holds a Process-
Pascal program.

These two programs are inter-dependent. If the Process-Pascal program is running, a
new operating system cannot be downloaded.

If a Process-Pascal program is present in the Flash library, a new operating system
cannot be downloaded to Flash, because the operating system is located at the
beginning of the Flash memory area, and the Process-Pascal program is loaded
immediately after it.

The situations described above are just two of the aspects which the Program Download
utility automatically monitors, to ensure download integrity. Should any other prohibited
situations occur, the utility will provide any necessary warnings, before a program is
automatically stopped or deleted.

502 086 04

Manual VIGO 65/92

7 Tools for PROCES-DATA modules

The tools described in this chapter relate only to modules manufactured by PROCES-
DATA A/S.

7.1 PD 3000 / PD 4000 Download
The purpose of this program is to download Process-Pascal code to modules not
originally designed to support the P-NET standard Program Channel. This applies to the
PD3000 and PD 4000 series of controllers with older operating systems. The utility can
be called from the MIBOCX, using the right mouse button menu, when the appropriate
node is selected.

The program is downloaded to the controller specified by the identifier inserted in the
Download to controller edit field. After a program has been downloaded, it can be
started by clicking the Start button.

If the selected node is a PD4000 controller, and it is required to store the code in flash
memory, the Process-Pascal program must be downloaded together with an operating
system. The name of the file holding the operating system is inserted in the Operating
system code file edit field.

When a controller, a Process-Pascal code file, and possibly an operating system code
file, have been specified, the program can be downloaded, by clicking the Download
button.

502 086 04

66/92 VIGO Manual

7.1.1 Download to controller
The Download to controller edit field is used to insert the name of the controller to
which a program is to be downloaded. The selected controller must be of type PD3000
or PD4000.

A controller identifier can be inserted using four alternative methods. When this program
has been launched via the MIBOCX, the controller identifier is automatically inserted. The
controller name can also be included as a start up parameter. It can be inserted from the
MIB, by clicking the MIB button and then double clicking on a controller name within the
MIBOCX, or it can be directly keyed in into the edit field.

The integrity of the controller identifier is NOT checked, until the Download button or the
Start button is clicked. When either of these actions occur, a test will establish whether
the controller is of the correct type and version. The version must be 2.00 or later.

7.1.2 Process-Pascal code file
The Process-Pascal code file edit field is used to identify the file to be downloaded,
which contains the Process-Pascal program code. The selected file must be a Process-
Pascal ".COD" file, generated by the Process-Pascal compiler version 2.00 or later.

A code file name can be inserted using three alternative methods. The code file name
can be included as a start up parameter when launching the PD3000 / PD4000 Download
program. It can be selected from an Open file dialog, by clicking the FILE button and then
opening the file, or it can be directly keyed in into the edit field. The integrity of the name,
type and version of the selected file is not checked, until the Download button is clicked.

7.1.3 Operating system code file
The Operating system code file edit field is used to specify the file to be downloaded,
which contains the Operating system. This file is only required when a Process-Pascal
program is to be downloaded to FLASH memory, in a PD4000 controller.

The selected file must contain the PD4000 operating system, as a ".COD" file, version
2.00 or later, (NOT a ".HEX " or ".EP0" file), as provided by PROCES-DATA A/S. For
example, the file might be called "4000v30.COD".

A operating system code file name can be inserted using three alternative methods. The
code file name can be included as a start up parameter when launching the PD3000 /
PD4000 Download program. It can be selected from an Open file dialog, by clicking the
FILE button and then opening the file, or it can be directly keyed in into the edit field. The
integrity of the name, type and version of the selected file is not checked, until the
Download button is clicked.

502 086 04

Manual VIGO 67/92

7.1.4 Download to
The Download to radio buttons define to which memory type the program is to be
downloaded. If the controller is a PD3000, the program can only be downloaded to RAM.
If the controller is a PD4000, the program can be downloaded to either RAM or FLASH.

If FLASH is selected, the name of a file containing the PD4000 operating system must
be inserted in the Operating system code file edit field, before clicking the Download
button. The correct selection of RAM or FLASH options is not checked, until the
Download button is clicked.

Clicking the Download button commences the process of downloading the code file(s)
specified in the code file edit field(s), to the selected controller.
Before a program is actually downloaded, the controller is stopped and reset.

If FLASH is selected, the FLASH memory is first cleared, which takes about 20 seconds.
The operating system is then downloaded. Finally, the Process-Pascal program is
downloaded.
Once a program has been downloaded, it can be started by clicking the Start button.

The state of the Download to radio buttons should not be changed during the period
between download and start.

7.1.5 Starting PD3000 / PD4000 Download
When the PD3000 / PD4000 Download utility has been started from the MIBOCX, the
contents of the Download to controller edit field are automatically inserted.

PD3000 / PD4000 Download may also be started by setting up a shortcut. In this
situation, it is also possible to transfer 4 command line parameters, by amending the
shortcuts properties. The first parameter is the controller identity, to which the program
is to be downloaded. The value of this parameter will be inserted in the Download to
controller edit field. The second parameter is the name of the Process-Pascal code file,
and this will be inserted in the Process-Pascal code file edit field. The third parameter
is the name of the Operating system code file, which will be inserted in the Operating
system code file edit field. The fourth parameter defines the state of the Download to
radio buttons. If the value of this parameter is ’RAM’, the RAM button will be checked,
otherwise the FLASH button will be checked.

When the PD3000 / PD4000 Download program is closed down, the contents of the
Download to Controller, Process-Pascal code file and Operating system code file
edit fields, and the state of the Download to radio buttons, are all saved in a file called
{PD}PDDOWNLOAD.CFG. This file would normally be located in the current folder, e.g.
VIGO. When the PD3000 / PD4000 Download program is started again, these values are
restored, if no start up parameters have been specified.

502 086 04

68/92 VIGO Manual

7.2 Calculator Assembler

The Calculator Assembler provides all the necessary services for a programmer to
design, edit, assemble and download programs to calculator channels in P-NET modules,
from a PC. The Calculator Assembler is an integrated program with an editor, an
assembler, a debugger and a loader for P-NET. Calculator programs are written as
assembler instructions in text files. By using the editor, the source text is edited and
saved. By using the assembler, the source text is assembled to generate the calculator
instructions. These instructions are downloaded to the Calculator channel, and the
program can then be started. It is possible to debug the downloaded program by single
steps or a break point.

An example of a calculator program with some typical instructions.

Move #D,CR1 ; Let CR1 point out the pulse processor
;channel in a PD 3221

Start: Move #0,IR1 ; First element
Loop: Move CR1:#A[IR1], Acc ;Load pulse processor registers[elementNo]

Add 100
Move Acc, CR1:#A[IR1] ; Store back incremented value
Inc IR1 ; Next element
Move IR1, Acc ; Load IR1 into Acc
Comp Acc > 15 ; Is last element treated?
Jump.False Loop ; No: then repeat loop

Finish: . ; Yes: then
.
.
Jump Start ; Last instruction must be an unconditional

; jump to a label
End ; End of program

502 086 04

Manual VIGO 69/92

7.2.1 User Interface
The program’s main window contains a menu bar at the top and a status line at the
bottom. A file can be opened for editing and assembling. Furthermore, the program has
a MIB button used to select the destination module for download and debugging.

In the following paragraphs, the different parts of the program are covered in detail
separately.

7.2.2 Editing a file
The editor is used to edit a calculator program. Files can be opened by the ’File | Open...’
command in the menu. Files are also saved and printed from the File menu. Calculator
assembler source files have CAS as default extension.

A new (blank) file window corresponding to a new assembler file can be created with the
’File | New’ command.

502 086 04

70/92 VIGO Manual

The standard edit commands (listed in the Edit menu) for copy, cut and paste of a
selected text are available in the editor. Text can be exchanged to and from the Windows
clipboard. The editor can undo the last cut command. Marked text will be replaced when
new text is entered. The search and replace operations are listed in the Search Menu.

In the status line the cursor’s position is shown. It is also indicated if the file has been
modified since the last time it was saved.

Note that when the register window (used when debugging) is shown, the content of the
edit window is locked. If changes have to be made, close the register window, make the
changes, assemble the program and download it again. Then reopen the register window
to see the effect of the changes.

7.2.3 Assembling a program
The assembling of a source file is started from the Assemble Menu. A status dialogue
displays the line number and size of the generated code during the assembling.

When an error is found, a dialogue will pop up to inform the user about the error. After
pressing the OK button in the status dialogue, the assembling process continues.
Pressing the cancel button in the status dialogue can interrupt the assembling process.

During the assembling process a debug (*.deb) file is generated. It contains a list of line
numbers, instruction addresses and label names. The list is used for debugging.
After a successful assembling (No errors found), it is possible to download the generated
code to a calculator channel. The download command in the main menu is the means to
do that.

Using the Assemble menu, generated code can be saved in a file. The ’Write to INC file’
command in the ’Assemble’ menu, will create an include file for Process-Pascal. The
’Save to COD file’ command will save to a file on disk, ready to be downloaded to a
calculator channel.

*.inc The generated calculator instructions as Process-Pascal source
text. May be included in a Process Pascal program (ASCII).

*.cod The generated calculator instructions in a binary format.

7.2.4 Downloading a program
For downloading of calculator programs, a calculator channel must be selected as
destination. A calculator channel is a channel with a physical ID ending with
’.CALCULATOR’.
To select a calculator channel, activate the MIB button at the top left of the screen. This
changes the edit window into a MIB viewer. Use the mouse to expand the MIB structure

502 086 04

Manual VIGO 71/92

to find the desired calculator channel. When the calculator channel is highlighted, click
on the MIB button again or double click the channel. This will close the MIB viewer and
the edit window reappears. The selected channel is now shown to the right of the MIB
button.

When the desired destination channel is shown, select the Download menu. This will start
the standard P-NET downloader application. For further information on the download
program, refer to the documentation for the downloader.

7.2.5 Debugging a program
The Calculator Assembler supports interactive debugging of a calculator program
downloaded to a calculator channel. The debugger makes it possible to single step
through the calculator instructions or to set a break point.

After an assembling of a source text, the generated codes must be downloaded to a
calculator channel, and the module must be reset to reinitialise the calculator. The
debugger is started by selecting Register Window in the main menu. When debugging
starts, the register window will show the calculator’s registers. It is not possible to edit the
program source when the register window is shown.

The user can single step through the program, by pressing a key (F7). To set a break
point, the user places the cursor on the line containing the instruction at which a stop is
required, and then press the F4 key. The calculator then starts, and runs until the break
point is reached. When the execution stops the calculator’s internal registers can be
inspected in the register window. The register values can also be changed. To restart the
calculator program from the first instruction, the F2 key can be pressed.

The register window also contains three buttons, which acts as shortcuts to the Debug
Step, Debug Goto cursor and Debug Reset commands. The Debug Reset command
stops the calculator if it is running, and resets the calculator’s instruction pointer to the
first program instruction. When the debugger is reset, has been single stepped or has
reached a breakpoint, the line containing the next instruction to be executed, is
highlighted as marked text.

7.2.6 Calculator programming
Details about the calculator programming, the calculator registers and the instruction set
are found in the Calculator Programming Manual (PD Calculator Assembler, ref. no. 502
061).

7.2.7 Help
Online information about this program, is available by using the Help menu.

502 086 04

72/92 VIGO Manual

7.3 Calculator Download
The purpose of this program is to download Calculator code to modules not supporting
the standard P-NET Program Channel. It is used to download calculator program code
to the Calculator Channels included in the PD3221 UPI and PD3230 Weight modules
produced by PROCES-DATA A/S. It may be started from within the Calculator Assembler,
or it can be launched from the MIBOCX using the right mouse button menu, when a
Calculator channel has been selected.
When a program has been downloaded, it can be started, by checking the RunEnable
option.

If this utility
program is cal-
led using the
right mouse
button menu,
the identity of
the Channel to
which the
download is to
be made, is
automatically provided. The Channel identity can be changed, by pressing the MIB
button, and then selecting a new Calculator Channel. A File browser can be opened for
selecting a Code file, by pressing the FILE button. The node containing the Calculator
Channel must be defined in the MIB, before any Download procedure can be started.

The program is downloaded to the Calculator Channel, specified by the identifier inserted
in the Download to channel edit field. The name of the file holding the calculator code,
is specified in the Calculator code file edit field.

Before downloading, a channel must be specified, and a code file selected. The
Calculator Download program automatically controls the state of the WriteEnable flag in
the Node. Following a download, the WriteEnable state is set back to the value it had,
before the start of the download.

7.3.1 Download to channel
The Download to channel edit field is used to insert the identifier of the channel, to
which a calculator program is to be downloaded. The selected channel must be a
Calculator Channel in a PD3221 UPI or PD3230 Weight node. These channels have an
object type of 7.

502 086 04

Manual VIGO 73/92

A channel name can be inserted using four alternative methods. If this program is
launched using the right mouse button menu, the identity of the Channel is automatically
inserted. The channel name can also be included as a start up parameter. It can be
selected from the MIB, by clicking the MIB button and then double clicking on a channel
name within the MIBOCX, or it can be directly keyed into the edit field.

7.3.2 Calculator code file
The Calculator code file edit field is used to select the file containing the calculator
program to be downloaded. The selected file must be a calculator file, having an
extension of ".COD", which has been generated by the Calculator Assembler produced
by PROCES-DATA A/S. However, Calculator programs developed under Windows 3.11
may use the extension ".CXE".

A code file name can be inserted using three alternative methods. The code file name
can be included as a start up parameter. It can be selected from an Open file dialog, by
clicking the FILE button and opening the required file, or it can be directly keyed into the
edit field.

Once a program has been downloaded, it can be started by checking RunEnable.

7.3.3 RunEnable
The RunEnable check box reflects the state of the boolean variable RunEnable, in the
selected calculator channel. Whenever RunEnable is true, indicated by a tick in the check
box, the calculator program will be running. When the downloading of the program is
complete, RunEnable is automatically set to false, so that the calculator program doesn’t
start until RunEnable is checked.

The RunEnable variable is stored in a memory type called RAMInitEEPROM. This
means, that there are in fact two variables, one in RAM and one in EEPROM. It is the
state of RunEnable in RAM that determines, whether the calculator program is running
or not. It is the state of RunEnable in RAM that is mirrored by the RunEnable check box.

After a reset of a UPI or Weight node, the state of RunEnable is copied from EEPROM
to RAM. If the state is TRUE, the calculator program will automatically start running.

The state of RunEnable in EEPROM can be set True, by clicking the ON button under
Autostart after reset. If RunEnable in RAM was False, it will be set True for a short
period, during this operation.

The state of RunEnable in EEPROM can be set False by clicking the OFF button under
Autostart after reset. If RunEnable in RAM was True, it will be set False for a short period,
during this operation.

502 086 04

74/92 VIGO Manual

7.3.4 Download
Clicking the Download button will begin the procedure of downloading the code file,
specified in the Calculator code file edit field, to the selected channel.

Before the program is downloaded, the calculator is stopped, by setting RunEnable to
False. RunEnable remains False, so that the program doesn’t start automatically after
downloading has been completed.

7.3.5 Reset node.
Clicking the Reset node button will reset the UPI or Weight node. The button is provided
as a convenient way to ensure that the calculator behaves, as it should, following a reset.
That is, whether it autostarts or not.

7.3.6 Starting the Calculator Download program
Calculator Download may be started from within the Calculator Assembler, or it may be
launched from within the MIBOCX, via the right mouse button menu, when the Calculator
Channel in a PD3221 UPI or a PD3230 Weight module has been selected. These
Calculator Channels are of object type 7.

Calculator Download may also be started using a previously set up shortcut. In this case,
it is possible to include two command line parameters, by amending the shortcut
properties. The first parameter is the identity of channel, to which the program is to be
downloaded. The value of this parameter will be shown in the Download to channel edit
field. The second parameter is the name of the Calculator code file, and will be shown
in the Calculator code file edit field.
If Calculator Download is started from within the Calculator Assembler, these two
parameters are automatically transferred.

When the Calculator Download program is closed down, the contents of the Channel and
code file edit fields are saved in a file called {PD}CALCULATORDOWNLOAD.CFG. This
file is placed in the current folder, which is typically the VIGO folder. When Calculator
Download is started up again, these values are restored, if no new parameters have been
specified.

502 086 04

Manual VIGO 75/92

7.4 Screen Dump

The Screen Dump utility is used to up load screens displayed on P-NET controllers,
manufactured by PROCES-DATA A/S. Once a picture has been up loaded, it can be
printed out, saved in a file, or transferred to the clipboard. The program is useful when
creating documentation applicable to Process-Pascal application programs.

Screen Dump is able to up load display screens from PD3010, PD4000, PD5010,
PD5015 and PD5020 controllers. However, to obtain a picture from a PD5020, which has
a larger screen, a special task and set of variables (VGALOAD) must be incorporated in
the Process-Pascal program in the controller.

502 086 04

76/92 VIGO Manual

Screen Dump can be started from the MIBOCX, using the right mouse button menu,
when a node of the following controller type is selected: PD3010, PD4000 or PD5010,
PD5015 or PD5020. These form one of the Object Types - 3000, 4000 or 5000.

If this procedure is used, the Controller Identifier will be automatically transferred to the
Load picture from controller edit field.

Screen Dump may also be started from a shortcut, in which case the controller identifier
may be transferred as a parameter.

When the identifier of a controller has been specified, the display screen can be up
loaded by pressing the LOAD button. After a picture has been loaded, it can be stored
in a Windows bitmap file ".BMP", by means of the Save or Save as menu items.

The picture can also be printed by means of the Print command in the File menu. If
required, the picture can be copied to the clipboard, and then imported into other
programs, such as Paintbrush, WordPerfect or Word.

The size and location of the Screen Dump window on the PC screen may be changed.
When the Screen Dump program is closed the actual size and location of the window is
saved, along with the controller identifier, and the name of the file last used. These values
are restored the next time Screen Dump is started. The controller identifier is not
restored, if Screen Dump is launched from within the MIBOCX or with a parameter.

7.4.1 Save / Save as
The Save / Save as dialogues can be called by clicking the Save or Save as toolbar
buttons, or from the File menu, or by pressing "Ctrl + S" on the keyboard.
If a file name has not yet been defined, this can be done using the file dialogue. Once a
file name has been chosen, it will be shown in the header of the Screen Dump window.
The file is saved as a Windows bitmap file, with the default extension ".BMP".

7.4.2 Print
A loaded screen can be directed to print from within the Screen Dump program, by
means of the Print dialogue. This dialogue is called by clicking the Print button, or from
within the File menu, or by pressing "Ctrl + P" on the keyboard.

7.4.3 Load
Once a controller identifier has been inserted into the controller edit field in the program
window, the current controller screen image can be up loaded by clicking the LOAD
button.

Loading pictures from a PD3010, PD4000, PD5010 or PD5015 only takes a few seconds.
However, loading pictures from a PD5020 can take up to several minutes. If the loading

502 086 04

Manual VIGO 77/92

of a picture from a PD5020 is cancelled (by pressing the Cancel button), a new picture
load must not be initiated during the next 30 seconds.

7.4.4 Copy to clipboard
Once a picture is loaded, it can be transferred to the standard Windows clipboard. From
here, it can be imported into other Windows programs. The loaded picture is copied to
the clipboard by pressing the Copy to clipboard button, or from the Edit menu, or by
pressing "Ctrl + C" on the keyboard.

7.4.5 Load picture from controller
The Load picture from controller edit field is used to insert the identifier of the controller
holding the screen image to be up loaded.

The selected controller must be of type PD3010, PD4000, PD5010, PD5015 or PD5020.
The Controller Identifier can be inserted using four alternative methods. If this program
is launched using the right mouse button menu, the identity of the controller is
automatically inserted. It can also be inserted using the MIB, by clicking the MIB button,
and then double clicking on the required Controller Identifier within the MIBOCX. The
Controller Identifier can also be inserted during Screen Dump start up, by using a saved
parameter, or it can be directly keyed in into the edit field.

502 086 04

78/92 VIGO Manual

7.5 MapToMIB

The MapToMIB program is a conversion utility used to convert MAP files to SMB
files.This utility is only required for programs compiled by Process-Pascal compiler
versions prior to 4.00.
A MAP file is generated by older versions of the Process-Pascal compiler, and contains
an ASCII text description of the variable names and their types, as declared in a Process-
Pascal program.

The SMB file (produced by the MapToMIB program), is a binary representation of the
same information, but in a format that can be read by the MIB Edit program. SMB is short
for SubMIB.

A SMB file is used to update or create a new Node type in the MIB database.

Using the MapToMIB program

The following section describes the functionality of the menus and buttons in the program
window. For a detailed description of how to create or update a Type in the MIB
database, refer to ’Step-by-step Instructions’

File List
The File List contains a list of MAP files for selection. These are the MAP files that are
to be converted by the MapToMIB program. To add or remove files, use the File: Open
and File: Clear File List menu commands.

The program can either convert one file or all the files in the File List (File: Make or File:
Make All). Clicking the down arrow to the left of the File List, and then clicking the
filename can select a single file.

Result
This field contains a message indicating the result of a conversion, e.g. an error
message.

502 086 04

Manual VIGO 79/92

Make SMB File
Pressing this button will convert the selected MAP file into a SMB file. This is the same
as selecting File: Make in the menu.

Exit
Pressing this button will terminate the program.

File: Open
The File: Open command will show an open-dialog box. The selected file
will be added to the File List.

File: Clear File List
This command clears the File List.

File: Make
The File :Make command will convert the selected MAP file in the File List into a SMB
file, which will be placed in the same folder as the MAP file. This is the same as clicking
the Make SMB File button.

File: Make All
All the MAP files in the File List will be converted to SMB files, and will be placed in the
same folder as the MAP files

File :Exit
This command terminates the program.

File :About
Selecting this command will show an About box, stating the program name and the
current version.

Step-by-step Instructions
The following procedures should be used to update or create a node Type in the MIB
database, based on the variables and types declared in a Process-Pascal program.

1. Generate a MAP file with the Process-Pascal compiler.

2. Start the MapToMIB program. Add the MAP file to the File List by using the File:
Open command. Ensure that the MAP file is selected in the File List. If it is not,
select it by clicking the down arrow in the File List and then clicking the filename.
Note, that the contents of the File List are preserved between each session of the
MapToMIB program, so once a file has been added, it will remain there until File:
Clear File List is selected.

3. Convert the MAP file into a SMB file by clicking the Make SMB File button. If no
errors occur, terminate the MapToMIB program by clicking the Exit button.

4. Select the MIB Edit tab and select View: Show Types in the menu. This should
reveal all the Types (red icons) currently defined in the MIB database.

502 086 04

80/92 VIGO Manual

5. If it is a new Type, it should be created as described in this section. If it is an
existing type that is to be updated, the following steps (5.a to 5.e) should be
skipped.

a. Right click the project icon (e.g. SampleProject) and select New from the
menu.

b. Ensure that Add New as: Sub Element is selected.

c. Select Node Type as New Kind.

d. Key in a Type name for the new node in the New Name field.

e. Press the OK button.

6. Right click the new type and select Update Type from the pop up menu. This will
show an Open File Dialog box. Select the SMB file created by the MapToMIB
program.

The type is now updated / created

7. If the node is a PD3000 or a PD4000 Controller, the following steps (7.1a to 7.1d)
should be performed:

1a. Right click the new node type and select Properties from the pop up menu.
The Properties window will now open.

1b. In the Properties window select the Type Info tab and enter the following
values:

Capabilities: 130
Object Type 3000 or 4000

1c. Close the Properties window.

1d. Select View: Show Nodes/Virtual Names in the MIB Edit window.

502 086 04

Manual VIGO 81/92

If the node is a PD5000 Controller, the following steps (7.2a to 7.2f) should be performed:

2a. Right click the new node type and select Properties from the pop up menu.
The Properties window will now open.

2b. In the Properties window select the Type Info tab and enter the following
values:

Capabilities: 32
Object Type 5000

2c. Expand the node-tree in the MIB Edit tab window by clicking the ’+’ sign to
the left of the new type name.

Use the scroll-bar on the right-hand side of the MIB Edit window, and scroll
down to find the following channel types:
Channel Name Object Type
Service 1
LedCh 2
AlarmCh 2
OpSysCh 11
PPProcCh 11

The Object type of each channel name should be changed in accordance
with the above table. To do this, perform the following procedure (2d) for
each channel name.

2d. Right click the channel name in the MIB Edit window, and select Properties
from the pop up menu. In the Properties window, note the Type under
Element info. This is the Typename of the channel, e.g. ’TypeNo117’.

Use the scrollbar on the right-hand side of the MIB Edit window to find the
typename of the channel. Left click the typename to update the Properties
window with the type information of the channel typename.

Select Type Info in the Properties window and change the Object Type to
the value in the above table.

Repeat this for each channel name in the table.

2e. Close the Properties window.

2f. Select View:Show Nodes/Virtual Names in the MIB Edit window.

502 086 04

82/92 VIGO Manual

8. An instance of this newly created node type can now be incorporated within the
project. If it is a new Node, it should be created as described in this section. If the
node of this node type already exists, the node type will have already been
updated, and this step can be skipped.

To create a new Node, right click the project icon in the MIB Edit window and
select New in the pop up menu. In the Add Element dialog box, make sure that
Add new as: Sub Element is selected. Select Node in the New Kind combo
box. Type a name for the node in the New Name edit box. Now click the OK
button.

Right click the new node icon and select Properties from the pop up menu.
Under the Element Info tab in the Properties window, select the new node type
name in the Type combo box. Select the network to which the Node is connected
in the Net combo box.

Close the Properties window.

9. Right click the WorkSpace icon in the MIB Edit window, and select Refresh from
the pop up menu.

The new node is now ready to be used.

502 086 04

Manual VIGO 83/92

8 Appendix A

The following tables will prove to be useful to programmers designing application
programs, who wish to use the facilities offered by VIGO.

Table 1 contains the Properties which can be used in VIGO STANDARD (VIGO.STD).

Table 2,3 and 4 show the Properties and Methods which can be used in VIGO
PROFESSIONAL (VIGO.PRO).

Table 5 and 6 contain a short description of the Kinds/elements that are used in the MIB
database.

Table 7 contains the data types that are defined for P-NET modules, which VIGO also
uses.

Table 8 contains the Object Types for all Standard P-NET Channels. In addition, the
Object Types for some company specific channel types, owned by PROCES-DATA A/S,
are also given.

Further information about the P-NET Standard Channels can be found in the "P-NET
Standardized General Purpose Channel Types" manual, from the International P-NET
User Organization.

Table 9 contains the values for Capabilities and ObjectType for a selection of PROCES-
DATA modules, which may be used in VIGO. In the MIB definitions, the Capabilities and
Objecttype for all NodeTypes must be set to the correct value, in order to list the
appropriate relevant tools from the right mouse menus in the MIBOCX.

IMPORTANT NOTE TO PROGRAM DEVELOPERS:
Most application programmes using VIGO create objects using VIGO Standard
(VIGO.STD). These applications use the PhysID to select the variable to access. By
setting the PhysID property for an object, all other associated properties are automatically
set in accordance with the MIB contents.

In cases where a program developer is using VIGO Professional (VIGO.PRO) objects,
and, for some reason, wants to modify some of the properties, it is entirely the
programmers’ responsibility to set ALL the other related properties to ensure that these
are compatible. Otherwise, errors may occur in transmission or data conversion.

502 086 04

84/92
V

IG
O

M
an

u
al

Properties for VIGO STANDARD (VIGO.STD)

OLE2
Type

Property

Property

Property

Property

Description

Identifies the physical object. This function fills out the specification of the physical object obtained from the
Manager Information Base.
This variable contains a unique error code, in case an error occurs when accessing an object property or
method.
This variable contains an error message in plain text. This could be used in a Message Box.

Used to operate on all data types. This Property must be used for directly receiving and sending data to
variables in VIGO STANDARD.

Data type

String

Integer

String

Variant

Name

PhysId

ErrorCode

ErrorString

Value

T
ab

le 1

502 086 04

M
an

u
al

V
IG

O
85/92

Properties and Methods for VIGO PROFESSIONAL (VIGO.PRO)

Setting the Physical identifier will overwrite the other properties.

OLE2 Type

Property

Property

Property

Property

Method
Method

Property

Property

Property

Property

Property
Property

Description

Identifies the physical object. This function fills out the specification of the
physical object obtained from the Manager Information Base.
This variable contains a unique error code, in case an error occurs when
accessing an object property or method.
This variable contains an error message in plain text. This could be used in
a Message Box.

Used to operate on all data types. This Property must be used to receive
and send data directly to variables in VIGO PROFESSIONAL.

Used to start reading data into the Buffer. Data can be read using InValue
Used for writing to the contents of the Buffer. Data can be send to the buffer
using InValue
Identifying a simple element in a complex structured variable, identified and
obtained by PhysId, and located in a Virtual Object.
Used to operate on all data types. This Property must be used to receive
and send data to the Buffer, when using the DoRead or DoWrite Methods in
VIGO PROFESSIONAL.

This property indicates if the command has finished and the data are ready
when the Buffer is used to Read / Write data.
Indicates the progress of a certain command, e.g. how much (%) of a file is
downloaded.
Used to stop a sequence running within the IDC, e.g. download or upload.
Used to enable exception handling procedures build into the virtual object.

Data type

String

Integer

String

Variant

Void
Void

String

Variant

Boolean

Float

Void
Boolean

Name

PhysId

ErrorCode

ErrorString

Value

DoRead
DoWrite
SubPhysId

InValue

DataReady

Progress

StopSequence
EnableExceptions

T
ab

le 2

502 086 04

86/92
V

IG
O

M
an

u
al

Properties and Methods for VIGO PROFESSIONAL (VIGO.PRO)

Setting the Physical identifier will overwrite the other properties.

OLE2
Type

Method

Method
Method
Method
Method
Method
Method
Method
Method
Method
Property
Property
property

Property
Property
Property

Method
Method
Method

Description

Download a domain to a node. Function returns immediately. Filename must be written in the Fileame
property before Download is called. The Progress property can be read during the Download process.
Upload a domain (program) from a node. This method is not implemented in VIGO 4.0.
Delete a domain within a node.
Start a program execution.
Stop a program execution.
Resume a stopped program.
Reset a stopped program.
Kill a program execution
Select a domain to be part of a program invocation. Domain is passed as parameter.
Unselect the domain within a program invocation. Domain is passed as parameter.
Program invocation state.
The name of the domain used within the Program Invocation.
File name for the file to Down Load or Up Load

Vendor name of a node (MMS).
Model name of a node (MMS).
Revision of a node (MMS).

P-NET specific. The passed parameter is and’ed with the data specified by PhysId, eg. VigoObj.And(Var)
P-NET specific. The passed parameter is or’ed with the data specified by PhysId, eg. VigoObj.Or(Var)
P-NET specific. The value of the returned parameter depends on the Test And Set conditions, eg.
res =VigoObj.TestAndSet(Var)

Data
type

Void

Void
Void
Void
Void
Void
Void
Void
Void
Void
Integer
String
String

String
String
String

Variant
Variant
Variant

Name

Download

Upload
DeleteDomain
Start
Stop
Resume
Reset
Kill
SelectProgram
UnselectProgram
ProgramState
ProgramName
FileName

Vendor
ModelName
Revision

ExAnd
ExOr
TestAndSet

T
ab

le 3

502 086 04

M
an

u
al

V
IG

O
87/92

Properties and Methods for VIGO PROFESSIONAL (VIGO.PRO)

OLE2
Type

Property

Property

Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property
Property

Method

Description

This property contains information about which Instruction/Data Converter is to be used for
communication with the end Node. This property is mainly used by VIGO to determine which IDC is to be
called.
This property contains a network address determined by the HUGO2 format. It contains the route to the
end Node.
This is an address that is local for the single Node. E.g. SoftWire number or socket number.
This is an internal node parameter, e.g. used to access a specific offset for a complex variable.
This property is similar to the Offset property, but it is only used when SubPhysID is used.
This is an internal node parameter.
This property contains the size of the data structure in bytes.
This property is similar to the Size property, but it is only used when SubPhysID is used.
Description of a specific node object, e.g. for P-NET it could be a analogue channel, digital channel, etc.
Defining the type that is to be requested within a node. Only used for non standardized types.
This property is similar to the DataType property, but it is only used when SubPhysID is used.
Enables that Historical Errors are visible in the ErrorCode.
Indicating that the Property/Method is read only.
Indicating that the Property/Method is write only.
Reserved for future use.
Indicating the capabilities of the node, e.g. support bitno, offset, etc.
Enables physical addressing. The physical address must be set using InternalAddress.
Enables that the data are accessable from a file and not from the network. This may be used for
simulation purposes.
This method is used to specify a message to receive when a DoRead or DoWrite method has completed

Data type

Integer

String

LongInteger
Long
Long
Byte
Long
Long
Integer
Integer
Integer
Boolean
Boolean
Boolean
Short
String
Boolean
Boolean

Void

Name

IDCNo

NodeAddress

InternalAddress
Offset
SubOffset
BitNo
Size
SubSize
ObjectType
DataType
SubDataType
InformationInErrorCode
ReadOnly
WriteOnly
MaxRetry
NodeCapabilities
PhysAddress
OnlineAccess

SetMessage

T
ab

le 4

502 086 04

88/92
V

IG
O

M
an

u
al

Kinds of MIB elements used in a Project description

Description

The Project holds information about the whole Project description. The data are stored in a MIB-file.
Boolean, Byte, Char, Word, Integer, LongInteger, Real, LongReal, OldReal, Timer, RealDate and OdDate are all BasicTypes,
from which all other types are constructed.
NodeTypes holds information about the entire data structure to use in a node. The elements (channels and softwire numbers)
inside are all set up as SubElements
A ChannelType holds a description for a channel in a Node. The elements (Registers) inside are set up as SubElements.
Complex structures for variables are set in a RecordType. The elements (RecordFields) inside are set up as SubElements.
Enumerated holds identifier for logic names used in reeling off. The elements inside (EnumeratedName) are set up as
SubElements.
In ArrayType an array of a specified type can be created.
In BufferType a buffer of a specified buffer element type can be created.
In BitArrayType a boolean array can be specified. Instead of occupying a byte to each boolean value, the BitArrayType only uses
one bit for a boolean.
To give special values to a type, SetType is used.
StringType is used to define a string, which consists of a length (in bytes) and an array of char.
The VirtualRecordType is used to give a Virtual description of the physical plant. The elements inside VirutalRecordType (Alias,
Constant, VirutalRecordType and VirtualArrayType) are set up as SubElements, and can be accessed using these subnames.
The VirutalArrayType is used to give a Virtual description of the physical plant. The elements inside VirutalArrayType (Alias,
Constant, VirtualRecordType and VirtualArrayType) are set up as SubElements, and can be accessed by using index values.
To define a Bitmap of a specific type, BitMapType is used.
A Pointer to another Type definition is created from PointerType
To reserve a name for a Procedure in an application the Kind: Procedure is used.
To reserve a name for a Function in an application the Kind: Function is used.

Type

Project
Type

Type

Type
Type
Type

Type
Type
Type

Type
Type
Type

Type

Type
Type
Type
Type

Kind

Project
BasicType

NodeType

ChannelType
RecordType
Enumerated

ArrayType
BufferType
BitArrayType

SetType
StringType
VirtualRecordType

VirtualArrayType

BitMapType
PointerType
Procedure
Function

T
ab

le 5

502 086 04

M
an

u
al

V
IG

O
89/92

Kinds (Variables) in the MIB

Description

Nodes are used to gain contact to modules within the physical plant. Nodes are only set up from the kind: NodeTypes.
Channels are used in the description of a NodeType. Channels are set up from the kind: ChannelType.
Registers are used to describe all variables inside a ChannelType. Registers can be set from all Type Kinds, except
ChannelType and NodeType.
If the SoftWire number is known, this can be given directly. SWNumbers are used in NodeType.
A RecordField holds all Type Kinds, except ChannelType and NodeType. RecordFields can only be used inside a RecordType.
To set a Constant in the Project description the Constant element can be used.
As SubElements to Enumerated, EnumeratedNames are used. The Names represent a specified value.
Aliases are used to set up pointers, which can act as short cut to elements within the Project description.
In Virtual descriptions the VirtualName consist the VirtualRecordType or the VirtualArrayType to use.

Type

Variable
Variable
Variable

Variable
Variable
Constant
Constant
Variable
Variable

Kind

Node
Channel
Register

SWNumber
RecordField
Constant
EnumeratedName
Alias
VirtualName

T
ab

le 6

502 086 04

90/92 VIGO Manual

List of datatypes for P-NET modules.

P-NET Data Type
Number

Hex Decimal Length in bytes

Empty 0x20 32 -
Integer 0x22 34 2
LongInteger 0x23 35 4
Real 0x24 36 4
LongReal 0x25 37 8
RealDate 0x27 39 8
String 0x28 40 -
Boolean 0x2B 43 1
OldDate 0x2E 45 8
Byte 0x31 49 1
Word 0x32 50 2
UserDefined 0x3D 61 -

Table 7

502 086 04

Manual VIGO 91/92

Object types for P-NET Channels.

The object types for P-NET Standard Channels and some company specific channels are found
in the following table.

Table 8

Object Description

0 Object type is not used or the object type is a non-standard type

1 Service channel

2 Digital IO channel

3 Common I/O channel

4 Analog measurement channel

5 Current output channel

6 PID-regulator channel

7 Calculator channel

8 Pulse Processor channel

9 Printer channel

10 Weight channel

11 Program channel

12 Power Monitor channel

14 Communication channel

32769 PROCES-DATA specific Data channel

32770 PROCES-DATA specific Common I/O channel

32771 PROCES-DATA specific Thyristor Switch

32773 PROCES-DATA specific Key/Mouse

32774 PROCES-DATA specific Display

32775 PROCES-DATA specific GateWay

32776 PROCES-DATA specific Generator Switch

502 086 04

92/92 VIGO Manual

Object types for PROCES-DATA modules.

The following table shows the object type and the capabilities for a selection of standard modules
from PROCES-DATA A/S.

Table 9

Module
number

ObjectType Interpretation of capabilities Capabilities

PD340 340 NoOffset,NobitAddress,OldType 7

PD1611 1000 NoOffset,NobitAddress,OldType 7

PD3100 1000 NoOffset,NobitAddress 3

PD3120 1000 NobitAddress 2

PD3150 1000 NoOffset,NobitAddress 3

PD3221 1000 NobitAddress,NoOffsetInlong 130

PD3230 1000 NobitAddress,NoOffsetInlong 130

PD3240 1000 NobitAddress 2

PD3250 1000 NobitAddress 2

PD3260 1000 NobitAddress 2

PD3920 1000 NobitAddress 2

PD3930 1000 NobitAddress 2

PD3940 1000 NobitAddress 2

PD3000 3000 NobitAddress, ExtendedPNET 34

PD4000 4000 NobitAddress, ExtendedPNET 34

PD4500 4500 ExtendedPNET 32

PD5000 5000 ExtendedPNET 32

PD5010 5000 ExtendedPNET 32

PD5015 5000 ExtendedPNET 32

PD5020 5000 ExtendedPNET 32

