
502 090 01

GB May 1999

PROCES-DATA A/S, Navervej 8, DK-8600 Silkeborg, Denmark, Phone +45 87 200 300, Fax + 45 87 200 301

P-NET CONTROLLER

PD 4000

Manual

502 090 01

II/IV P-NET Controller, PD 4000 Manual

 Copyright 1999 by PROCES-DATA A/S. All rights reserved.

PROCES-DATA A/S reserves the right to make any changes without prior notice.

P-NET, Soft-Wiring and Process-Pascal are registered trademarks of PROCES-DATA A/S.

502 090 01

Manual P-NET Controller, PD 4000 III/IV

Contents
Page

1 GENERAL INFORMATION... 1

1.1 FEATURES.. 1
1.2 APPLICATION... 1
1.3 DISPLAY... 1
1.4 KEYBOARD.. 1
1.5 MICROPROCESSOR .. 1
1.6 MEMORY ... 2
1.7 REAL TIME CLOCK.. 2
1.8 PROGRAMMING ... 2
1.9 P-NET COMMUNICATION INTERFACE ... 2
1.10 MECHANICAL CONSTRUCTION ... 2

2 GETTING STARTED.. 3

2.1 BOOT PROM PROGRAM, MASTER RESET.. 3
2.2 DOWNLOADING PROGRAMS.. 4
2.3 CMOS RAM... 5

3 PROGRAMMING.. 6

4 SYSTEM FILE.. 7

4.1 SOFTWIRE 0, USEDSOFTWIRENUMBERS .. 10
4.2 SOFTWIRE 1, DEVICETYPE ... 10
4.3 SOFTWIRE 2, PROGRAMVERSION ... 11
4.4 SOFTWIRE $03, ERROR3... 11
4.5 SOFTWIRE $04, SERIALNUMBER .. 12
4.6 SOFTWIRE $06, DATETIME... 12
4.7 SOFTWIRE $07, FREERUNTIMER.. 12
4.8 SOFTWIRE $0A, MODEPORT1 .. 13
4.9 SOFTWIRE $0F, ERRORF... 13
4.10 SOFTWIRE $12, INTERFACEERRORBUFFER ... 13
4.11 SOFTWIRE $18, CONTROLLERCODE .. 14
4.12 SOFTWIRE $1A, DEFAULTPEN.. 15
4.13 SOFTWIRE $1C, SCREENINFO... 17
4.14 SOFTWIRE $22, ACTUALPOWERDOWNTIME ... 17
4.15 SOFTWIRE $24, KEYBOARDBUFFER... 17
4.16 SOFTWIRE $26, DEFAULTMODEPORT1 ... 18
4.17 SOFTWIRE $2C, NODELIST... 18
4.18 SOFTWIRE $2E, CURSORHIDE .. 18
4.19 SOFTWIRE $32, PDBOXDEFINITION... 18
4.20 SCREEN ... 19
4.21 STARTCODE .. 19
4.22 INPUTSTRING .. 19
4.23 KEYPRESSED ... 19
4.24 GLOBALERRORSTRING... 19

5 CONFIGURATION PROGRAM .. 20

5.1 GENERAL DESCRIPTION.. 20
5.2 PROCEDURES AND FUNCTIONS. ... 20
5.3 GLOBAL VARIABLES ... 21
5.4 USING THE INITIALISATION UTILITY... 22

502 090 01

IV/IV P-NET Controller, PD 4000 Manual

5.5 ERROR MESSAGES ...24
5.6 USING THE CONFIGURATION UTILITY ..25

6 CONSTRUCTION, MECHANICAL...26

7 SPECIFICATIONS ...27

7.1 POWER SUPPLY..27
7.2 PROGRAM STORAGE. ...27
7.3 DISPLAY. ..27
7.4 KEYBOARD. ...27
7.5 AMBIENT TEMPERATURE..27
7.6 APPROVALS. ..28

502 090 01

Manual P-NET Controller, PD 4000 1/28

1 General information.

1.1 Features

* 16 Bit Microprocessor
* Programmed in High Level

Multi Tasking Language
* Completely Sealed Construction
* Large Data Storage Capacity
* Membrane click-switch Keyboard
* Backlit Graphics LCD Display
* User Definable Overlay
* P-NET Fieldbus Communication
* Battery Back-up
* Real Time Clock

1.2 Application
The PD 4000 is designed as a control computing and display element in both highly
complex or simple process control systems. It is used in conjunction with the collection of
distributed input/output and control modules, which provide digital, analogue, flow and
weighing facilities, via the P-NET fieldbus (EN 50170 Vol. 1). The Controller is completely
sealed, and is therefore suitable for use in any industrial environment. The compact design
and the outstanding environmental specifications for the Controller, makes it exceptional
for machines and mobile applications.

1.3 Display
The display is a fast graphics LCD, using Supertwist technology, providing wide viewing
angle. The display has a resolution of 150 by 20 pixels, enabling a variety of character fonts
and graphics to be used, e.g. 3 lines with 25 characters each. The viewing area is 120 mm
* 19.2 mm. An LED back light is incorporated. The display is protected with non-reflecting
glass.

1.4 Keyboard
The keyboard is a membrane click-switch foil, with metal domes. The keyboard has 28
keys. The key functions depend upon the type of application, and are defined by the user
program. The unique design includes a self adhesive keyboard foil, which provides the
ability to customise the unit, and ensures an ideal operator/instrumentation interface.

1.5 Microprocessor
The Controller utilises a 16-bit HC 68001 microprocessor with a clock frequency of 9.8
MHz, giving it exceptional power and memory addressing capability.

502 090 01

2/28 P-NET Controller, PD 4000 Manual

1.6 Memory
The program memory consists of a flash EPROM of 256 K bytes, and a 64 K bytes boot
PROM. The data memory has 512 K bytes of CMOS RAM with battery back up. In the event
of a power failure, the Controller will save the current program state. When power is
restored, control will either continue from the failure point, or reset, depending on
instruction.

1.7 Real Time Clock
The Controller is equipped with a real time clock with battery back-up. It is configured for
24 hour format and enables the display or recording of real time, in seconds, minutes,
hours, days, months and years.

1.8 Programming
The Controller is programmed in Process-Pascal, which is a multi-tasking high level
language developed especially for the programming of process control activities, which
utilise P-NET distributed interface modules. Process-Pascal is an extension of standard
PASCAL. The compiled program is downloaded to the flash EPROM in the Controller via
the P-NET interface. The powerful nature of the compiler enables a system designer to
write independent processes as separate, testable tasks, and to define process elements,
such as valves, sensors, keyboards and displays as named program variables. This makes
it particularly easy to design control programs, which can also incorporate system
instrumentation requirements.

1.9 P-NET Communication Interface
The Controller has a P-NET multi-master interface. P-NET uses the RS-485 Serial interface
for communicating with P-NET interface modules, at a transmission speed of 76,800 baud.

1.10 Mechanical construction
The Controller is housed in a black injection moulded plastic enclosure. The entire
Controller is completely filled with silicone. This construction makes it extremely resistant
to water, dust and vibration.

The controller is made up of 2 parts, consisting of the main part, with built-in electronics,
display and keyboard, and the power supply part, with power supply, battery for the CMOS
RAM, and P-NET interface circuitry. The power supply part is attached to the main part by
means of 4 screws.

502 090 01

Manual P-NET Controller, PD 4000 3/28

2 Getting started

2.1 Boot PROM program, Master reset
On delivery, and after a Master reset, the controller will run the Process-Pascal program
stored in the boot PROM memory.

A Master reset is performed by detaching the power supply part of the controller for at least
10 seconds.
NOTE: NEVER disconnect the power supply part when power is turned on. This might
DESTROY the controller.

When the controller is powered up after a Master reset, the display will show the following:

Pressing any key other than the one in the upper left corner, when the message ”Press
here for flash” is shown on the display, will change the display to the following:

Now the P-NET node address for the controller, and the number of masters, can be keyed
in. It should be understood that the program for this routine is permanently stored in the
boot PROM, and is thus the same in all controllers. However, the keyboard layout defined
in the users application program may be different from that expected by the boot PROM
program, perhaps with the “+/-“ key and others placed elsewhere. Therefore, the application
keyboard overlay might NOT be in accordance with the boot PROM program.

The boot PROM program expects the
keys to be placed according to the
default keyboard foil, as shown in this
figure:

502 090 01

4/28 P-NET Controller, PD 4000 Manual

After keying in the P-NET node address and the number of masters, the ”+/-” key should
be pressed. This will make the controller initialise the P-NET system according to the new
values, and will start a small demo program. The demo program can be used to check that
all the pixels in the display can be turned on and off, and gives an indication of the
serviceability of the controller.

While the demo program is running, the controller is ready for a download at any time.

If a program has previously been downloaded to the flash memory, this program can be
selected to run instead of the boot program. Following a Master reset, the display will show
the first screen illustrated on the previous page. The arrow points to the key in the upper,
left corner of the keyboard. Pressing this key will change the display to show the message:

When the controller has been reset, e.g. by turning the power off and on, or by using the
reset button in the download utility, the Process-Pascal program in the flash memory will
start.

If no valid program has been downloaded to the flash memory, the attempt to start one will
give an undefined result. It may then be necessary to perform another Master reset, and
download a valid program to the flash memory.

2.2 Downloading programs

A Process-Pascal program may be downloaded to flash memory or to the CMOS RAM
memory.

When a Process-Pascal program is to be downloaded to flash memory, it is ALWAYS
downloaded together with the operating system. This means that it is possible to update
the operating system to a new version, without changing the boot PROM. Therefore, the
program space in flash memory must be sufficient for both the Process-Pascal program
and the operating system. The operating system occupies approx. 50 K bytes of program
memory.
Please refer to the VIGO Users Manual (ref.no. 502086), for further information on how to
use the Download tool under Windows 95/98 or NT.
In order to enable download of a program to either flash or RAM, switch 1, which is
mounted inside the power supply part of the controller, must be in position ON. The switch
is placed inside the controller, to make it possible to seal the controller. This ensures that
the program in flash cannot be changed without breaking the seal. This facility can be very
useful when the controller is used in applications requiring some sort of official approval.

502 090 01

Manual P-NET Controller, PD 4000 5/28

However, it also means, that if the switch is turned OFF, it is not possible to update the
controller without having to give it a Master reset. Therefore, the switch should normally be
left in the ON position, for applications not requiring the controller to be sealed. See the
drawing below.
NOTE: When the switch is in the OFF position, physical addressing is not possible and it
is therefore not possible to debug the program using the Process-Pascal debugger.

When a Process-Pascal program is to be downloaded to RAM, the version of the operating
system in the controller must be compatible with the version of the Process-Pascal program
to be downloaded. Versions are compatible when the first 2 digits in the version number are
the same. For instance, version 2.31 is compatible with version 2.30, but NOT with version
4.00. Hence, if a Process-Pascal program is compiled with a compiler of version 4.0x, and
the controller holds a boot PROM with an operating system of version 2.3x, it will NOT be
possible to download to RAM, when the program in the controller is running in boot PROM.
In this case, the Process-Pascal program should first be downloaded to flash together with
version 4.0x of the operating system. When the controller program is running in flash, new
Process-Pascal programs of version 4.0x can be downloaded to RAM.

Downloading of programmes to RAM can be performed using the VIGO program
Pddownload.exe.

2.3 CMOS RAM
The PD 4000 controller holds 512 K bytes of CMOS RAM with battery backup.

The operating system in the controller uses 8 K bytes of the RAM memory, leaving 504 K
bytes free for use by a Process-Pascal program. The RAM memory is typically used for
user data, variables, stack memory for tasks etc. associated with the Process-Pascal
program, but may also be used for Process-Pascal code. However, normally the Process-
Pascal code would be loaded into flash memory.

After a Master reset, the contents of the CMOS RAM are lost. The entire RAM is cleared
to zeros, then the Process-Pascal program in the boot PROM is started, which uses about
1.5 K bytes of RAM. Thus, after a Master reset, the contents of this part of the RAM is
undefined.

502 090 01

6/28 P-NET Controller, PD 4000 Manual

3 Programming

The PD 4000 controller is programmed in Process-Pascal, which is based on standard
PASCAL with some extensions, such as multi-tasking, built-in facilities for accessing
external variables via P-NET, and standard procedures for writing on the display.

The Process-Pascal source code is edited by means of a standard editor. The source code
is then compiled, by means of the Process-Pascal compiler. Depending on the selected
options in the compiler setup, the compilation of the code results in the generation of a
number of new files, being the >xxx.LST<, >xxx.MAP<, >xxx.SMB<, >xxx.DEB<, >xxx.ERR<
and >xxx.COD< files.

The >xxx.LST< file is a list file, holding the entire program and includes line numbers etc.
The list file also contains any error messages, all of which are indicated with a ”̂ ”. Finally,
the list file holds information on compile time, as well as the data and code size for the
program.

The >xxx.MAP< file contains a list of all the global variables and constants in the program.
This includes the Softwire number, and the type and size of the variables and constants.
The Softwire number of a variable or constant is defined as a logical address, which can,
for instance, be used to access the variable or constant from other controllers via P-NET.
The Process-Pascal compiler generates what is called a Softwire List, which is a table
containing information about all the global variables and constants defined in the program.
The Softwire List is part of the Process-Pascal code. The Softwire number acts as a pointer
to an element in the Softwire List, defining one global simple or complex variable or
constant.

The >xxx.SMB< file is a sub-MIB file, which can be amalgamated with a MIB file in VIGO.
The SMB file contains all information about the variables, tasks, properties for backup,
visibility etc.

The >xxx.DEB< file is a debug file, and contains additional information required by the
Process-Pascal Debugger when debugging a program.

The >xxx.ERR< file is an error file, and contains a list of errors that may have occurred
during compilation.

The >xxx.COD< file holds the Process-Pascal code. The file contents are in binary format.
The Process-Pascal compiler does not compile the source code into machine code, but into
an intermediate code (P-code), which is then interpreted by the interpreter/operating system
in the controller. This dramatically reduces the size of the COD file.

The Process-Pascal language is described in a separate manual. This manual mainly
contains information specifically for the PD 4000 controller.
The Process-Pascal compiler suite is shipped with a number of additional programs and
files, some of which contain basic variable, constant and procedure declarations. The
following paragraphs contain a description of these files.

502 090 01

Manual P-NET Controller, PD 4000 7/28

4 System file

The PD4000.SYS file contains a declaration of the variables and constants that are needed
by the controller’s operating system. Most of the declarations should NOT be changed, as
the operating system expects these system variables to be at specific Softwire numbers,
and have specific types.

The PD4000.SYS file must always be included immediately before the Process-Pascal
program. See the examples in the Process-Pascal library, e.g. PD4000.pp.

The {$L-} statement is a compiler directive, which indicates to the compiler that it should
not output anything to the >xxx.LST< file, until the statement {$L+} is found.

The following TYPE declaration declares various RECORD structures for the P-NET
system, the real time clock, the display etc.

The CONST and VAR part of the file declares the constants and variables placed in the first
part of the SoftWire List. The SoftWire number of the constants / variables is shown as
comments in the beginning of each line. Every globally declared constant / variable
occupies one SoftWire number. It is the SoftWire number that provides the means to
access these data via P-NET.

(*$L- *)
{==}
{ }
{ ProjectName : PD4000 }
{ Unity : INCLUDE }
{ Name and date: PD4000.SYS 22-03-99 }
{ Writer : PROCES-DATA A/S }
{ Modification : }
{ }
{==}
{ Type identifiers and field identifiers must NOT be changed in the following }
{ part of this declaration }
{==}

DEFINE
 MIBAccessSystem = [MIB_NoBackup, MIB_InVisible];

{$MIB MIBAccessSystem}

TYPE
 Memory = Real;
 Bit8 = ARRAY[0..7] OF BOOLEAN;
 Bit16 = ARRAY[0..15] OF BOOLEAN;
 Bit24 = ARRAY[0..23] OF BOOLEAN;
 Bit32 = ARRAY[0..31] OF BOOLEAN;

 UARTrec = RECORD
 PnetNo : INTEGER;
 NoOfMaster : INTEGER;
 END;

 DateTimeArr = ARRAY[0..7] OF BYTE;

 CharacterGeneratorType = ARRAY[0..0] OF BITMAP;
 CharacterGeneratorPtr = POINTER TO CharacterGeneratorType;
 BitMapPtr = POINTER TO BITMAP;
 StringPtr = POINTER TO STRING[255];

502 090 01

8/28 P-NET Controller, PD 4000 Manual

 ControllerCodeRec = RECORD
 MaxPowerDown: LONGINTEGER;
 UpdateSign : CHAR;
 InputStr : StringPtr;
 CountryCode : INTEGER;
 END;

 PenInformationType = RECORD
 CharGen : CharacterGeneratorPtr;
 ForeGround : BYTE;
 BackGround : BYTE;
 RefX : INTEGER;
 RefY : INTEGER;
 AbsX : INTEGER;
 AbsY : INTEGER;
 Status : ARRAY[0..7] OF BOOLEAN;
 WindowNo : BYTE;
 END;

 ScreenInformationType = RECORD
 Video : BitMapPtr;
 Width : INTEGER;
 Height : INTEGER;
 CursorX : INTEGER;
 CursorY : INTEGER;
 CursorForeGround : BYTE;
 CursorBackGround : BYTE;
 Cursor : BitMapPtr;
 ScreenX : INTEGER;
 ScreenY : INTEGER;
 ScreenWidth : INTEGER;
 ScreenHeight : INTEGER;
 END;

 InterFaceErrorRecord = RECORD
 SWNo : WORD;
 VARAddr : LONGINTEGER;
 VAROffset : WORD;
 ErrorCode : WORD;
 END;

 NodeListElement = RECORD
 Code : BYTE;
 StdChannel : BOOLEAN;
 DeviceType : INTEGER;
 NodeAddr : STRING[10];
 END;

 IntRecordType = RECORD
 SWNo: INTEGER;
 Offset: INTEGER;
 END;

 ErrorStringType = STRING[80];

CONST
(* 0 *) UsedSoftWireNumbers = INTEGER(0) [MIBProperties = MIB_Visible]
 (* To be patched by the compiler during link phase *);
(* 1 *) DeviceType = 4000 [MIBProperties = MIB_Visible];
(* 2 *) PdPrgVersion = INTEGER(0400) [MIBProperties = MIB_Visible];

VAR
(* 3 *) Error3 : BYTE [MIBProperties = MIB_Visible]
 AT ADDRESS: $00FFFF03;
(* 4 *) SerialNumber : LONGINTEGER [MIBProperties = MIB_Visible];

(* 5 *) SWNo_5 : BYTE AT ADDRESS: $FFFF02;
(* 6 *) DateTime : DateTimeArr [MIBProperties = MIB_Visible]
 AT ADDRESS: $00FFFF24;

502 090 01

Manual P-NET Controller, PD 4000 9/28

(* 7 *) FreeRunTimer : LONGINTEGER [MIBProperties = MIB_Visible]
 AT ADDRESS: $00FFF806;
(* 8 *) SoftWire8 : LONGINTEGER;
(* 9 *) SWNo_9 : BYTE AT ADDRESS: $FFFF02;
(* A *) ModePort1 : UartRec [MIBProperties = MIB_Backup, MIB_Visible];
(* B *) SoftWireB : INTEGER;
(* C *) SoftWireC : INTEGER;
(* D *) SoftWireD : INTEGER;
(* E *) SoftWireE : INTEGER;
(* F *) ErrorF : BYTE AT ADDRESS: $00FFFF05;
(*10 *) SoftWire10 : INTEGER;
(*11 *) SWNo_11 : BYTE AT ADDRESS: $FFFF02;
(*12 *) InterFaceErrorBuffer : BUFFER[10] OF InterFaceErrorRecord;
(*13 *) SWNo_13 : BYTE AT ADDRESS: $FFFF02;
(*14 *) IntVecTable : ARRAY[0..31] OF Memory;
(*15 *) SoftWire15 : INTEGER;
(*16 *) BreakPoint : INTEGER;
(*17 *) SWNo_17 : BYTE AT ADDRESS: $FFFF02;
(*18 *) ControllerCode : ControllerCodeRec AT ADDRESS: $00FFFF30;
(*19 *) SWNo_19 : BYTE AT ADDRESS: $FFFF02;
(*1A *) DefaultPen : PenInformationType;
(*1B *) SWNo_1B : BYTE AT ADDRESS: $FFFF02;
(*1C *) ScreenInfo : ScreenInformationType [MIBProperties = MIB_Visible]
 AT ADDRESS: $FFFFC4;
(*1D *) SoftWire1D : INTEGER;
(*1E *) SoftWire1E : INTEGER;
(*1F *) SoftWire1F : INTEGER;
(*20 *) SoftWire20 : INTEGER;
(*21 *) SoftWire21 : INTEGER;
(*22 *) ActualPowerDownTime : LONGINTEGER AT ADDRESS: $00FFFF2C;
(*23 *) SWNo_23 : BYTE AT ADDRESS: $FFFF02;
(*24 *) KeyboardBuffer : BUFFER[10] OF BYTE [MIBProperties = MIB_Visible]
 SOFTWIREINTERRUPT:0 [InternStore, ExternStore];
(*25 *) SWNo_25 : BYTE AT ADDRESS: $FFFF02;

CONST
(*26 *) DefaultModePort1 = UartRec(PnetNo: $2, NoOfMaster: $6);
(*27 *) SoftWire27 = INTEGER(0);
(*28 *) SoftWire28 = INTEGER(0);

VAR
(*29 *) Softwire29 : BYTE;
(*2A *) Softwire2A : BYTE;
(*2B *) SWNo_2B : BYTE AT ADDRESS: $FFFF02;
(*2C *) NodeList : ARRAY[1..10] of NodeListElement
 [MIBProperties = MIB_Backup, MIB_Visible];
(*2D *) SWNo_2D : BYTE AT ADDRESS: $FFFF02;
(*2E *) CursorHide : ARRAY[1..50] of INTEGER; (* max cursorsize 32*25 *)
(*2F *) SoftWire2F : INTEGER;
(*30 *) SoftWire30 : INTEGER;
(*31 *) SWNo_31 : BYTE AT ADDRESS: $FFFF02;
CONST
(*32 *) PDBoxDefinition = ARRAY[0..0] OF WORD ([0]:0);
 (* To be patched by the compiler *)

{--}
{ The rest of this declaration may be moved, but it contains various }
{ declarations for the PD4000 LCD display }
{--}
(*$L+ *)

VAR
 Screen : VIDEOBITMAP[900] [MIBProperties = MIB_Visible]
 PLACE: $34 AT ADDRESS: $00FFE49A;

502 090 01

10/28 P-NET Controller, PD 4000 Manual

{$MIB MIB_NoWriteAccess, MIB_InVisible}

 contrastLCA1 : BYTE PLACE: $35 AT ADDRESS: $00200001;
 contrastKOPI : BYTE PLACE: $36 AT ADDRESS: $00FFFFA5;
 LCDIns1 : BYTE PLACE: $37 AT ADDRESS: $00280000;
 LCDIns2 : BYTE PLACE: $38 AT ADDRESS: $00300000;
 LCDIns3 : BYTE PLACE: $39 AT ADDRESS: $00380000;
 ContrastValue : INTEGER PLACE: $3A AT ADDRESS: $00FFFF08;
 AltFore : BYTE PLACE: $3B AT ADDRESS: $00FFFF9A;
 AltBack : BYTE PLACE: $3C AT ADDRESS: $00FFFF9B;
 StartCode : BYTE [MIBProperties = MIB_WriteAccess]
 PLACE: $3D AT ADDRESS: $00FFFF0B;

{$MIB MIB_WriteAccess, MIB_Visible}

 Year -> DateTime[6];
 Month -> DateTime[5];
 Day -> DateTime[4];
 Hour -> DateTime[2];
 Minute -> DateTime[1];
 Second -> DateTime[0];

 CONST
 InputLength = 9;
 ScreenHeight = 20;
 ScreenWidth = 152; (* ScreenWidth MOD 8 must be 0 *)
 White = $00;
 Black = $0F;
 Transparent = $10;
 Inverse = $1F;

VAR
 InputString : STRING[InputLength];
 KeyPressed : BYTE;
 GlobalErrorString : ErrorStringType;

{$MIB MIB_Backup}

Below is a description of some of the Softwire numbers defined in the system file. By
default, two of the VIGO MIB properties for the system variables are set to NoBackup and
InVisible. Where alternative settings are to be used, the specific VIGO MIB property is set
for particular system variables, e.g. [MIBProperties = MIB_Visible]
The VIGO MIB_Backup property is set at the end of the system file, which means that the
values for the following user defined variables will be capable of being backed up.

4.1 Softwire 0, UsedSoftwireNumbers
This parameter is declared as an integer constant, with the value of 0. When the program
is compiled, the Process-Pascal compiler will automatically insert the highest Softwire
number used, instead of the value 0. The final Softwire List will include the variables and
constants declared in the PD4000.SYS file, and all of the globally declared variables,
constants and procedures in the user application.

4.2 Softwire 1, DeviceType
This constant indicates that the device is of type 4000.

502 090 01

Manual P-NET Controller, PD 4000 11/28

4.3 Softwire 2, ProgramVersion
This constant indicates that the program version is 4.0, and the program must be compiled
with a Process-Pascal compiler version 4.0. The consistency is checked by the compiler.

4.4 Softwire $03, Error3
This variable is a byte, representing information about the error status of the controller.
Furthermore, the controller may be RESET by writing 255 (hex $FF) to this variable. The
error codes that can be read in the variable, are defined as follows:

Code in Error3 (hex) Meaning

$90 Master reset

$89 Reset because of watchdog

$88 Reset because of bus error

$87 Reset because of address error

$86 Reset because of illegal instruction

$85 Reset because of non-initialised interrupt

$84 Reset because of spurious interrupt

$83 Reset because of privilege violation

$82 Reset because of auto interrupt

$81 Reset because of power failure

$80 Reset because of $FF stored to Error3

$70 Error in real-time clock

$61 Error in changing task type to Softwire interrupt task

$20 Update not allowed

$19 Odd address access

$18 Pointer not initialised

$17 Procedure variable not initialised

$16 Cursor bitmap too large

$15 Cursor not initialised

$14 No more windows allowed

$13 Buffer error, a buffer is full / empty

$12 Convert error, error in converting ASCII to numeric

$11 Index error, array index out of bounds

$10 Arithmetic error, division by zero / overflow / underflow

When an error occurs, the corresponding error code is stored in Error3, if the error code is
larger than the one already stored there. The error code is also stored in ErrorF. After
Error3 is read from P-NET, the value in ErrorF is copied to Error3, and ErrorF is cleared.

When a variable in the controller is accessed from P-NET, the value of Error3 is checked.
If the value is not 0, the flag “Historical Error” in Control/Status in the P-NET response
frame is set to TRUE.

502 090 01

12/28 P-NET Controller, PD 4000 Manual

4.5 Softwire $04, SerialNumber
This parameter holds the serial number of the controller. The serial number CANNOT be
changed. A special function is related to the serial number, as it is possible to change the
P-NET node address of the controller by writing information to this variable. This is done
by storing a LONGINTEGER value here (in hexadecimal format, a longinteger occupies 8
digits), where the 6 least significant digits are the serial number of the controller, and the
2 most significant digits are the new P-NET node address.

Example: To change the P-NET node address of the controller with serial number 525614
(printed on the upper edge of the controller), to $12, the value $12525614 is written to
P-NET node $7E (a global broadcast node address), at softwire $04. Although there may
be a number of controllers or other P-NET devices connected to the bus receiving the
request, only the controller with serial number 525614 will react and change its P-NET node
address to $12.

4.6 Softwire $06, DateTime
This variable holds the value of the real time clock. In fact, the value in DateTime is a RAM
copy of the real time clock. The RAM copy is updated once a second by the operating
system.

Once a minute, the values of DateTime and the real time clock are compared (by the
operating system). If they are different, it is assumed that the user has changed the value
of DateTime, and the operating system will copy the value from DateTime to the real time
clock.

At midnight, the value of the real time clock is copied to DateTime by the operating system,
so that the task of keeping track of number of days per month and so on, is handled by the
real time clock.

The real time clock is battery powered, and will be running even when the controller is not
powered up. After a power up, the value from the real time clock is transferred to DateTime.

A complete description on the real time clock is found in the Process-Pascal manual (ref.
no. 502 052).

Some indirect variables are declared at the end of the system file, which point to the Day,
Month, Year, Hour, Minute and Second. These variables can be accessed directly from the
Process-Pascal program or from VIGO.

4.7 Softwire $07, FreeRunTimer
FreeRunTimer is a timer, to which internal events are synchronised. The timer is of type
Longinteger in 1/256 Second.

502 090 01

Manual P-NET Controller, PD 4000 13/28

4.8 Softwire $0A, ModePort1
The value of this variable defines the settings for the P-NET port of the controller. To
directly modify the P-NET node address or the number of masters, change the value in
ModePort1, and call the standard procedure InitPort1.

The value of ModePort1.PnetNo can also be changed via the SerialNumber, as described
under SerialNumber, Softwire $04. In this case, the procedure InitPort1 does not have to
be called to initialise the P-NET system. This is done automatically by the operating system.

Note that by changing the value of ModePort1, either from within the Process-Pascal
program in the controller, or via P-NET, it will NOT take effect until the procedure InitPort1
has been called, or the controller has been reset. Following a reset, the value of the
variable DefaultModePort1 is copied to ModePort1, before the P-NET system is initialised
according to ModePort1. However, by OR’ing the StartCode (see para.4.20) with ‘02’, the
copying of DefaultMode is disabled, and the P-NET port is initialised according to the
settings in ModePort1.

4.9 Softwire $0F, ErrorF
This variable holds an error code for the controller. Please refer to Error3, Softwire $03.

4.10 Softwire $12, InterfaceErrorBuffer
This variable is a buffer, which can consist of a number of records with information on
recently detected P-NET errors. An element is transferred to the InterfaceErrorBuffer by the
operating system, when a P-NET error occurs. By means of the statement Enable(Error)
in Process-Pascal, the user defines what type of P-NET errors will result in a transfer of an
element to the InterfaceErrorBuffer. Refer to the Process-Pascal manual for further
information on the Enable(Error) statement.

Since the variable InterfaceErrorBuffer is of type buffer, a complete element must be read,
and it is not possible to just read a single field in a buffer element. A new variable of the
same type as an element in the buffer should be declared. When an error occurs, the entire
element can be transferred from the InterfaceErrorBuffer to the variable of type
InterfaceErrorRecord. Now the fields of the variable can be accessed separately.

NOTE: When activating the automatic error detecting system and a report element is stored
in the buffer, relevant program must be written to read this report element from the
InterfaceErrorBuffer, to prevent the buffer from running full. It is possible to connect a
SoftwireInterruptTask to the InterfaceErrorBuffer. The corresponding SoftwireInterruptTask
task will then automatically be activated each time an element is transferred to the buffer
by the operating system.

The InterfaceErrorRecord is defined to include the following fields:

SWNo holds the Softwire number for the variable, within the declared interface module that
caused the error. That is, the Softwire number of the external variable in the Softwire table
in the PD 4000 controller.

502 090 01

14/28 P-NET Controller, PD 4000 Manual

The standard function VARNAME(SOFTWIRENo) returns the string constant after NAME
for the module variable, if it is declared. Refer to chapter VARIABLE DECLARATION in the
Process-Pascal manual.

VARAddr holds the logical address of the variable within the interface module. For simple
interface modules (I/O modules), the contents of VARAddr is a number, which combines
the channel number and the register number of the variable. If the module is a controller,
VARAddr holds the Softwire number of the variable in the other controller that caused the
interface error.

VAROffset holds an offset for the variable (in the interface module) that caused the
interface error. The field variable VAROffset can be used to locate a variable field in a
complex variable.

ErrorCode holds the errorcode relating to the interface error. The field is declared as a
word, where each bit has the following meaning:

4.11 Softwire $18, ControllerCode

This variable is a record of type ControllerCodeRec, consisting of the following fields:

MaxPowerDown indicates a time in seconds. If the duration of a power failure is shorter
than MaxPowerDown, the controller program execution continues from where it was before
the power failure. Otherwise the program restarts, as it would after a reset.

UpdateSign is used in conjunction with keying in new values to variables via the PD 4000
keyboard. When for instance a number key is pressed, the corresponding character is
transferred to the InputString (refer to the program in KEY4000.INC).

XX

15 13 012345678

No answer
Inform. length error
Sum check error
Overrun- frame- adr/data
Time out error
Short-circut on P-NET
P-NET not set to master
Trm err. on other net
Too many busy/wait
Buf in slave full/empty
NOT IN USE
Out of sync.
NOT IN USE
Data error in slave
Other Error 1)

General error in module

9

Data format error, SWNo error, Write protection, Node addr. error, Instruction error1)

14 11

502 090 01

Manual P-NET Controller, PD 4000 15/28

When the ENTER key (“=”) is pressed, the standard Process-Pascal procedure
PerformUpdate is called from the keyboard program. This procedure converts the contents
of InputString to, for instance, a real value, and stores the result in the corresponding
variable.

If the value of UpdateSign is = 0, the operating system will not automatically show the
contents of the InputString. This must then be performed by the Process-Pascal program,
which should be implemented in Key4000.INC.

If the value of UpdateSign is not 0, UpdateSign is seen as an ASCII character, and the
corresponding character will be shown on the display by the operating system. UpdateSign
is shown in the display field where the variable being updated is normally shown. The
variable to UPDATE, is selected by means of the display cursor.

The function associated with UpdateSign is illustrated in this example. The Process-Pascal
UPDATE statement is Update(MyVar:6:2), and the value of UpdateSign is ”*”.
1: The value of MyVar is 123.45 and the display shows: 123.45
2: Now, the cursor is placed inside the displayed value of MyVar, and the key ”2” is

pressed. This results in the following being shown on the display: 2*****
3: Now, the keys ”5” and ”6” are pressed, resulting in the following being displayed:

256***
4: Pressing the ”=” key now will give the following result: 256.00

InputStr holds information for the operating system, indicating the selected InputString.
InputString is used to update variables using the keyboard. This record element is
generated by the standard procedure SETINPUTSTRING and should not be accessed
directly.

CountryCode is used to select the decimal separator.
CountryCode = 0; (* decimal separator is a comma *)
CountryCode = 1; (* decimal separator is a point (GB) *)

4.12 Softwire $1A, DefaultPen
This variable is used when writing on the display. Each time a value, a line or a box is to
be displayed, a Pen is one of the parameters required within the Process-Pascal statement.
If, for example, the contents of the variable MyVar is to be displayed, the Process-Pascal
statement could be Display(MyPen, MyVar:5:1). However, if the parameter MyPen is
omitted, the Process-Pascal Compiler will look for a Pen called DefaultPen, according to
the normal ”scope” rules, as described in the Process-Pascal manual. If no local variable
with the name DefaultPen is declared, the global variable DefaultPen at Softwire $1A is
used.

A Pen must always be of type PenInformationType, which consists of the following fields:

CharGen contains a pointer to a character generator. A character generator is an array of
bitmaps, where each bitmap represents a character. Typically, the ASCII value for the
character is used as an index within the character generator.

502 090 01

16/28 P-NET Controller, PD 4000 Manual

The CharGen pointer is set up by use of the standard procedure SET-
CHARACTERGENERATOR. The figure below shows an example of the character ”A” from
a 6 x 8 character generator:

0 1 1 1 0 0

1 0 0 0 1 0

1 0 0 0 1 0

1 0 0 0 1 0

1 1 1 1 1 0

1 0 0 0 1 0

1 0 0 0 1 0

0 0 0 0 0 0

Foreground select the colour used for the TRUE (1) bits in the bitmap.

Background select the colour used for the FALSE (0) bits in the bitmap.

4 different colours may be selected for Foreground and Background: Black, White,
Transparent and Inverse.

Normally, Foreground is set to Black and Background to White. This means that the pixels
on the display corresponding to TRUE bits in the bitmap are turned ON (appear black), and
pixels corresponding to FALSE bits are turned OFF.

If Foreground is set to Transparent, the pixels corresponding to TRUE bits in the bitmap are
not changed.

If Background is set to Transparent, the pixels corresponding to FALSE bits in the bitmap
are not changed from their current setting

If Foreground is set to Inverse, the pixels corresponding to TRUE bits in the bitmap, are
inverted. This colour is normally used for the cursor, since this makes it possible to see the
cursor, whether it is placed on a black or a white area.

If Background is set to Inverse, the pixels corresponding to FALSE bits in the bitmap, are
inverted.
Foreground and Background can be accessed directly, or set by the standard procedure
SetColors.

RefX, RefY, AbsX, AbsY determines the position of the PEN (NOT the cursor) on the
display. The Pen position is defined relative to the upper, left corner of the display. So, the
pixel in the upper, left corner has position 0,0. Refer to the Process-Pascal manual for
details.

502 090 01

Manual P-NET Controller, PD 4000 17/28

Status is a variable of type ARRAY[0..7] of BOOLEAN. Only one bit, bit[0] is defined. The
bit is called UseAltColor. If this bit is TRUE, writing on the screen will use the colours
AltFore and AltBack, instead of Foreground and Background from the Pen.

This is a useful facility when, for example, a variable needs to be displayed inversely, in the
event of an error situation. Then, instead of asking if the error situation has arisen each
time the colours of the pen are changed, bit[0] in Status is set when the error situation
arises, and the AltFore and AltBack colours are set up only once.

WindowNo is set up by the standard initialisation program, and should not be altered by
the user.

4.13 Softwire $1C, ScreenInfo
This variable contains information, used by the operating system, about the screen format,
cursor position etc. The variable is set up by the standard initialisation program, and should
not be accessed directly by the user. Please refer to the Process-Pascal manual for further
details.

4.14 Softwire $22, ActualPowerDownTime
This variable indicates for how long the controller was without power the last time it was
powered down. If a Softwire interrupt task is connected to this variable, with interrupt
condition ”InternStore”, the interrupt task will be activated after each power down. Please
note that if the power failure lasted for less than one second, ActualPowerDownTime will
be zero, but if an interrupt is connected, this interrupt will still be activated.

4.15 Softwire $24, KeyboardBuffer
This variable is a buffer of byte, where the operating system stores a key code when a key
is pressed. It is also possible to achieve remote control, by storing ”key codes” in the Key-
boardBuffer via P-NET (an example of this can be found in VIGO, by selecting the program
called ‘Show PD4000 Controller’ from the right mouse menu).

The standard keyboard task, found in the file Key4000.INC, is declared as a softwire
interrupt task, connected to KeyboardBuffer, with interrupt condition ”InternStore" and
”ExternStore". The task will run each time a key is pressed, or a ”key code” is stored in the
KeyboardBuffer via P-NET. The key codes for the PD 4000 keyboard are shown below:

502 090 01

18/28 P-NET Controller, PD 4000 Manual

The key functions depend on the application, and are programmed in Process-Pascal.
However, the key codes are fixed. The keys are numbered as shown in the figure above.

If one key is pressed, the number of that key is stored in KeyboardBuffer by the operating
system. If the key is held down for more than 0.5 seconds, the operating system starts to
send REPEAT codes with a frequency of 8 Hz. A repeat code consists of the key number
+ 128 ($80). If, when one key is held down, another key is also pressed, the code for the
second key + 64 ($40) is stored in KeyboardBuffer.

Example:
Key number 4 is pressed. The code 4 is stored in KeyboardBuffer. Now the key is held
down. After 0.5 seconds, the code 132 ($84) is stored in KeyboardBuffer every 1/8 second.
Now, with key number 4 still held down, key number 7 is pressed. The code 71 ($47) is sent
to the KeyBoardbuffer. If both keys are held down for 0.5 seconds, the code 199 ($C7) is
stored every 1/8 second. No release code is stored, when the keys are released.

4.16 Softwire $26, DefaultModePort1
This constant holds the default settings for the P-NET port. This constant may be changed
in case other values for the default setting are required. Please refer to the description for
ModePort1 for further details.

4.17 Softwire $2C, NodeList
This variable is an array of elements containing node address, node type and code for
external nodes. The NodeList array can be used to access nodes that have not been
declared in the Process-Pascal program. A description of how this is accomplished can be
found in the Process-Pascal manual.

The NodeList array can be expanded to hold more than 10 nodes, and the length of the
NodeAddr string in NodeListElement can be reduced or increased. Apart from that, the user
should make no other changes to the NodeList declaration.

4.18 Softwire $2E, CursorHide
This is a variable used to save the appearance of the part of the display now covered by
the cursor. When the cursor is moved, the original uncovered display is restored from
CursorHide.
The size of this variable should be the same as (or larger than) the number of bytes
occupied by the cursor.

4.19 Softwire $32, PDBoxDefinition
This is an array of constants, generated automatically by the compiler. The constants in the
array are the Softwire numbers of all global, external declared variables in the Process-
Pascal program within the controller. PDBoxDefinition can, for example, be used to initialise
the modules within which these external variables are placed. Refer to the Process-Pascal
manual or the description (in this manual) of the INITBOX4.INC file.

502 090 01

Manual P-NET Controller, PD 4000 19/28

4.20 Screen
This variable declares the video-ram for the display. There should be no user access to this
variable.

4.21 StartCode
This variable is used to define, whether the Process-Pascal program that is stored in RAM
or bootPROM /FLASH should run after reset. Furthermore, StartCode also defines whether
DefaultModePort1 is copied to ModePort1 after reset. StartCode is defined as a BYTE,
where each bit in the byte has the following interpretation:

7 0

Not used
Not used
Debug info setting
Debug info setting
Debug info setting
Debug info setting
Don’t use DefaultModePort1
Run RAM-program

The remaining bits in StartCode are used to set debug information for the operating system,
and should not be changed by the user.

4.22 InputString
This variable holds the ASCII characters corresponding to the digits on the keyboard. Each
time a digit (or the sign or decimal point) key is pressed, the corresponding ASCII character
is appended to InputString. This is handled by the Keyboard task.

4.23 Keypressed
This variable holds a copy of the last key code that has been read from the Keyboardbuffer.
The key code is assigned to Keypressed in the Keyboard task and can be used by the user.

4.24 GlobalErrorString
This is a default declaration of a global error string that can be used together with the error
handling procedure. A skeleton for an error handling procedure can be found in the example
called ‘PD4000 When Error.PP’.

502 090 01

20/28 P-NET Controller, PD 4000 Manual

5 Configuration program

5.1 General Description.
The configuration utility contains all the necessary functions to perform everything needed
for configuration and initialisation of the modules that have been declared in the user
program. The configuration utility includes the procedures for CONFIG statements.

The configuration utility is written for the PD 4000 controller, and has the ability to configure
slave modules and controllers on the P-NET.

An example, called CONFIGPP, is available in the Process-Pascal library in the Example
folder.

5.2 Procedures and Functions.
The configuration program consists mainly of two procedures: One for verifying the
presence and type of the modules, and one for configuring the individual channels in the
modules.

To initialise the modules, you must first verify that they are in fact present. This is
performed by calling the following procedure:

InitializeInterfaceModules;

This procedure verifies the type of all the declared modules. If a module doesn't answer or
if it is of a wrong module type, options are displayed (see "Using the Initialisation Utility").

Next step is to initialise the individual channels in the modules, according to the CONFIG
statements in the global variable declaration. The channels and variables are configured
by calling the following procedure:

ModuleConfiguration;

This procedure sets up an error handler and then executes all the CONFIG statements. If
errors are detected, options are displayed (see "Using the Configuration Utility"). When all
channels have been skipped or configured, the number of failing channels and modules is
displayed. It DOES NOT return until NewDisplay is set TRUE.

The following procedures are defined for CONFIG statements in Config4.INC:

SetLongInteger(VAR CodeReg:LONGINTEGER;
ConfigValue:LONGINTEGER);

SetReal(VAR RealReg:REAL; ConfigValue:REAL);

SetInteger(VAR IntegerReg:Integer; ConfigValue:Integer);

SetByte(VAR ByteReg: BYTE; ConfigValue:BYTE);

502 090 01

Manual P-NET Controller, PD 4000 21/28

SetBoolean(VAR BooleanReg: BOOLEAN; ConfigValue:BOOLEAN);

SetBit8(VAR Bit8Reg:Bit8; Bit8Byte:BYTE);

PT100(VAR TempChannel:ChAnalogIn); {old modules}

Standard_PT100(VAR TempChannel:AnalogInCh); {new modules}

DigitalInput(VAR InChannel:ChDigitalIO);

DigitalOutput(VAR OutChannel:ChDigitalIO);

OutputWithFeedBack(VAR OutputChannel:ChDigitalIO;
 ChannelNumberA, ChannelNumberB:BYTE;
 PresetTime :REAL);

Since the format of the analogue channel has changed, there are two procedures for
configuring a channel for PT100 input: The PT100-procedure is used for PD1611, PD1651,
and PD1652. Standard_PT100 is used for modules following the standardised general-
purpose channel types, like the PD3221 UPI, PD3240 and PD3250.

5.3 Global Variables
A number of global variables and constants are declared and used by the configuration
utility. Some of these variables are declared in the main program, such as

VAR NewDisplay : BOOLEAN;

Setting this variable to TRUE will force an immediate exit from the configuration procedure.
In the demo program this is achieved by pressing function key number 24 (dec).
NewDisplay must be cleared before calling the configuration procedures.

The following constant is declared in InitBox4.INC:

ModuleCountBitSize = [integer value];

This constant defines the number of entries in a list that is used when skipping the
initialisation or configuration of modules. The value of this constant must be greater than,
or equal to, the number of modules defined in the program. The configuration utility
program itself uses 6 definitions, so the value must be AT LEAST 6 larger than the number
of module definitions you make. The default value is 512 and can be used in most cases.

The following variable is declared in InitBox4.INC:

ModuleSkipBitList: ARRAY[1..ModuleCountBitSize] OF BOOLEAN;

This list is an array that contains a flag for each of the modules declared in your program.
As each module (found in PDBOXDEFINITION) is checked for type and presence, the
corresponding flag is set, to indicate the state of the module.

502 090 01

22/28 P-NET Controller, PD 4000 Manual

This is used during the channel configuration, to avoid configuring channels in modules of
wrong type or missing modules.

If a flag is set FALSE, the corresponding module was found, and the error handler will flag
errors concerning this module.

If a flag is set TRUE, the module was abandoned during the first test, and the error handler
(named ErrorCorrection) will ignore all errors on this module. All configuration subroutines
are testing this flag using the function SkippedModule.

As each entry in this array is 1 bit in size, the default value takes 64 bytes of RAM, so
unless there are more than 506 modules, there is no reason to change the value of
ModuleCountBitSize. If more modules are defined than this list can hold, an error is
generated when configuration is attempted.

Note that the procedure ModuleConfiguration requires the information in this array, so the
procedure InitializeInterfaceModules MUST be called first.

5.4 Using the Initialisation Utility
When the initialisation utility is run, the presence and type of all modules are verified. If a
module does not respond, a display like this is shown

indicating that the module NAMED "Tank Con" did not respond. A new module does not
respond until its node address has been configured.

The program waits 5 seconds. Then a new display is shown, depending on the type of
module:

Display for PD modules in the 1000 series (old modules):

502 090 01

Manual P-NET Controller, PD 4000 23/28

Display for modules using standardised general-purpose channels and PD340C modules:

If skip is chosen, (by entering 1 in the field in the right side), the module will be marked
'missing' and will not be configured.

The method of retrying depends on the type of module: If the module is from the PD1000
series, check that the node switches on the motherboard are set correctly, then try again.
Otherwise, key in the SerialNumber of the module. The controller will then try to configure
the node address of the corresponding module.

If the module is found, but the type is wrong, another display is shown:

The program waits 5 seconds, and will then show the following:

PD3221 was the type of the module actually found where it expected the module NAMED
 "Tank Con". Before the correct module can be configured, the wrong module must be
disconnected. Find it by looking at the module type and serial number. Then disconnect the
module.

On modules from the PD1000 series it is not possible to read the SerialNumber via P-NET,
and no SerialNumber is displayed. As the node address on these modules is configured
with switches, look for modules with the wrong P-NET node address.

It should then be possible to configure the correct module.

502 090 01

24/28 P-NET Controller, PD 4000 Manual

5.5 Error messages

Possible error messages are:

"Module not found". There was no answer from the module.

"Wrong module type". The type of the module is different from that specified in the program.

"Two modules with same node address". Two or more modules are sharing the same node
address, therefore causing data collisions on the bus. It is not possible to find out which
modules are involved. Start disconnecting modules until this error disappears. When the
initialisation program asks for the modules, reconnect them one by one and retry.

"Error in next controller". The next controller (with the succeeding node address) failed the
token passing.

"P-NET short circuited". The P-NET system is exhibiting a short circuit.

502 090 01

Manual P-NET Controller, PD 4000 25/28

"Not set for master". The node address of the controller is higher than the maximum
number of masters expected on the net. The controller will never gain access to the net.
The node address and the number of masters must be correctly configured. This error does
not allow a retry. You can abort the initialization by setting NewDisplay TRUE (function key
24).

5.6 Using the Configuration Utility
After all modules have been initialised, the configuration procedure can be run. Each
channel with a CONFIG statement is checked. If the channel configuration differs from the
configuration value, the channel configuration is modified and checked again. If the con-
figuration program is unable to modify the settings, an error is received:

Display for PD1000 series and PD340C modules:

PD1000 series and PD340C modules are write protected using a switch on the mother-
board. This switch must be in the ON position to configure the module. Afterwards it must
be set OFF to protect the configuration.

Display for modules with standard channels:

In standard channel modules, the write protection switch is internal and controlled via the
P-NET. The configuration program will automatically handle the internal write protect
switch.

If the module continues to fail after setting the switch ON, there is either an invalid value
specified in the Process-Pascal program, or there may be a hardware error in the module.

In addition, similar errors to those described in the initialisation may be seen. This may
occur if, for some reason, the module fails during configuration.

502 090 01

26/28 P-NET Controller, PD 4000 Manual

6 Construction, Mechanical

The Controller is housed in a black injection moulded plastic enclosure. The entire
Controller is completely filled with silicone. This construction makes it extremely resistant
to water, dust and vibration.

The controller is made up of 2 parts, the main part with built-in electronics, display and
keyboard, and the power supply part, with power supply, battery for the CMOS RAM, and
P-NET interface circuitry. The power supply part is attached to the main part by 4 screws.

Weight: 0.7 kg

Sealing: IP68 @ front panel mounting

Enclosure: Black NORYL GFN

Scale drawing (in mm):

502 090 01

Manual P-NET Controller, PD 4000 27/28

7 Specifications

All electrical characteristics are valid at an ambient temperature -25 °C to +70 °C, unless
otherwise stated.

All specifications apply within the approved EMI conditions.

7.1 Power supply.

Power supply DC: nom 24.0 V
min 20.0 V
max 28.0 V

Ripple: max 5 %
Power consumption: max 2.0 W
Necessary power-up current: max 400 mA

7.2 Program storage.

RAM Memory size: 512 K bytes
FLASH Memory size (controllers with serial no. > 635600): 256 K bytes

7.3 Display.

Resolution: 150 by 20 pixels
Viewing area: 120mm * 19.2mm

7.4 Keyboard.

Membrane click-switch foil with metal domes: 28 keys

7.5 Ambient Temperature.

Operating temperature: -25 °C to +70 °C
Storage temperature: -40 °C to +85 °C

502 090 01

28/28 P-NET Controller, PD 4000 Manual

7.6 Approvals.

Compliance with EMC-directive no.: 89/336/EEC

Generic standards for emission:
Residential, commercial and light industry EN 50081-1
Industry EN 50081-2

Generic standards for immunity:
Residential, commercial and light industry EN 50082-1
Industry EN 50082-2

Vibration (sinusoidal): IEC 68-2-6 Test Fc

